Installation guide

Non-return valve

VCM 92

1. Identification & Installation

The non-return valve is designed for use in Seawater Reverse Osmosis (SWRO) membrane systems. In case the high-pressure pump stops momentarily, the volume of water in the membrane vessel may work as an accumulator and will send flow backwards.

When using multiple pumps in parallel, the non-return valve prevents the water from one pump to run into the parallel-coupled pumps at start-up. The valve is prepared for easy installation on the high-pressure outlet of APP 53-92 series 08 or higher.

Use only Style 77DX coupling or equivalent.

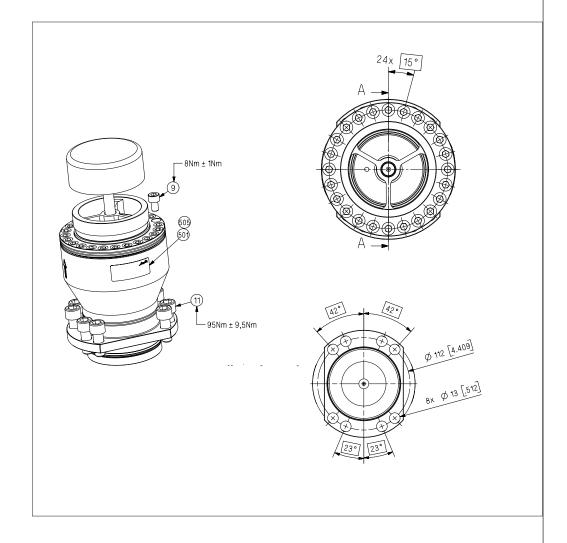
Туре	Outlet Connection 1)	Diameter mm (inch)	Length mm (inch)	Material ²⁾	Max. pressure barg (psig)	Flow continuoulu m³/h (gpm)	Code number
VCM 92	3" Victaulic OSG ³⁾	87.7 (3.45)	180.5 (7.10)	Super Duplex	80 (1,160)	92 (405)	180H0058

 $^{^{1)}\}mbox{The check valve}$ is mounted directly in the outlet port with a flange with 6 bolts (M10 x 25)

80R9416

²⁾ Wettet parts materials: Super Duplex, PEEK, PP, Hastelowy, FKM, NBR

³⁾ The installation instruction for Style 77DX is located in the Victaulic document I-100 Field Installation Handbood (http://static.victaulic.com)


2. Installation

2.1 Mounting holes and torque

The VCM 92 check valve comes with a flange connection that is easily mounted directly on the pump outlet port (outlet connection is not required).

When installing the valve, lubricate the O-ring at the flange before pushing it into the outlet of the pump.

Note: Bolts must be tightened with torque $95 \text{Nm} \pm 9.5 \text{ Nm}$.

