

SEMIPONT

Power Bridge Rectifiers

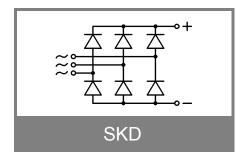
SKD 31F

Features

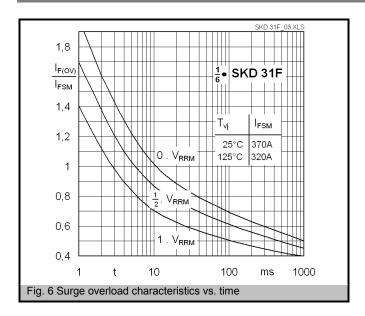
- Low generated noise and peak reverse current
- Sturdy isolated metal baseplate
- Fast-on terminals with solder tips
- Suitable for wave soldering
- Blocking voltage up to 2200 V
- High surge current rating
- UL recognized, file no. E 63 532

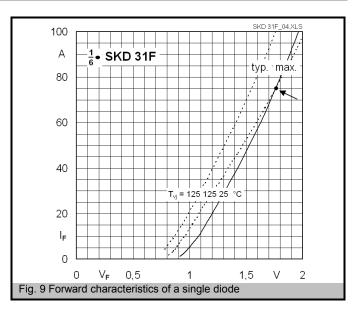
Typical Applications

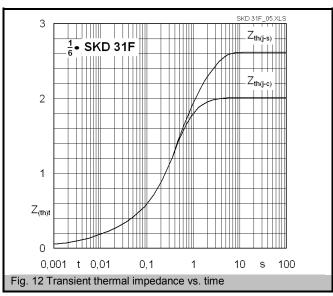
- Low EMI applications
- Input rectifiers for variable frequency drives
- Battery charger rectifiers
- Three phase rectifiers for power supplies
- Recommended snubber network for 50...60 Hz applications:

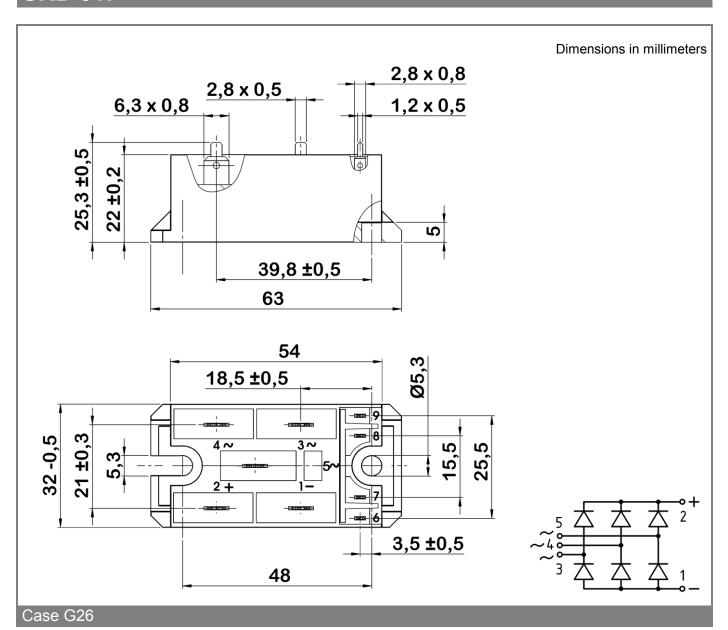

RC: 50Ω , $0.1 \mu F$ ($P_R = 1 W$)

- f = 50 ... 1000 Hz
- Freely suspended or mounted on an insulator
- 3) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm
- Recommended


V _{RSM} , V _{RRM}	V _{RMS} ⁴⁾	I _D = 31 A (T _{case} =100 °C) ¹⁾ Types
400	125	SKD 31F/04
800	250	SKD 31F/08
1200	400	SKD 31F/12
1600	500	SKD 31F/16
2200	690	SKD 31F/22 *


* Available in limited quantities


Symbol	Condition	Values	Units
I _D 1)	T _{case} = 85 °C	44	Α
	T _{amb} = 45 °C, isolated ²⁾ chassis ³⁾ P5A/100 P1A/120	5,3 17 26 32	A A A
	T _{amb} = 35 °C, P1A/120F	56	Α
I _{FSM}	T_{vj} = 25 °C ; 10 ms T_{vj} = 125 °C ; 10 ms T_{vj} = 25 °C ; 8,310 ms T_{vj} = 125 °C ; 8,310 ms	370 320 685 510	A A A ² s A ² s
$\begin{matrix} V_F \\ V_{(TO)} \\ r_T \end{matrix}$	T_{vj} = 25 °C, I_F = 75 A T_{vj} = 125 °C T_{vj} = 125 °C	max. 1,75 0,85 12	V V mΩ
I _{RD} I _{RD} t _{rr}	T_{vj} = 25 °C ; V_{RD} = V_{RRM} T_{vj} = 125 °C ; V_{RD} = V_{RRM} T_{vj} = 25 °C , I_F = I_R = 1 A	200 4 2,5	μA mA μs
$R_{\text{th(j-a)}}$	isolated ²⁾ chassis ³⁾ P5A/100 P1A/120	15 3 1,85 1,05	K/W K/W K/W
$R_{\text{th(j-c)}}$	per diode total	2,0 0,33	K/W K/W
$\begin{array}{l} R_{th(c\text{-}s)} \\ T_{vj} \\ T_{stg} \end{array}$	total	0,1 -40 +125 -55 +125	K/W °C °C
V _{isol} M _s	a. c. 50 60 Hz; r.m.s.; 1 s / 1 min. to heatsink SI units US units approx.	3600 / 3000 2 ± 15 % 18 ± 15% 66	V~ Nm lb. in. g
Case		G 26	<u> </u>



SKD 31F

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged noninfringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.