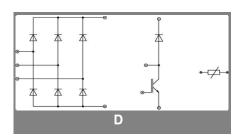


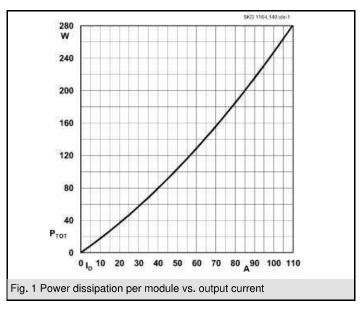
3-Phase Bridge Rectifier + IGBT braking chopper

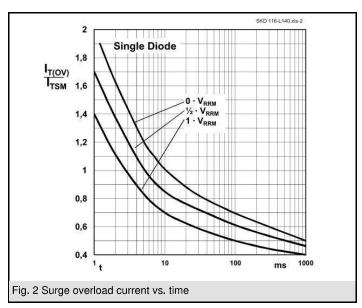
SKD116/...-L140

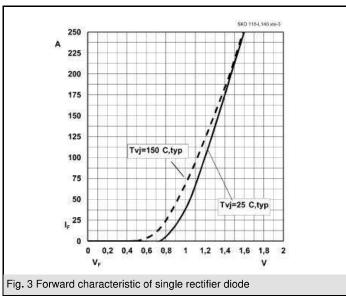
Features

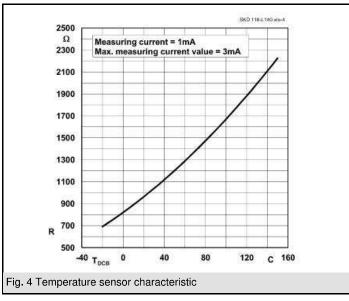
- Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High surge currents
- Up to 1600V reverse voltage
- IGBT Trench4 inside; max T_i=175°C
- CAL4F inside, max Tj=175°C
- $I_{CM}/I_{FM} = 3xI_{C,nom}/I_{F,nom}$ Rectifier diode, max Tj=150°C

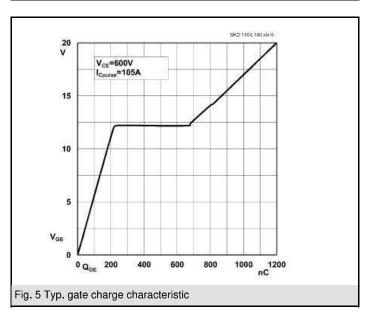

Typical Applications*

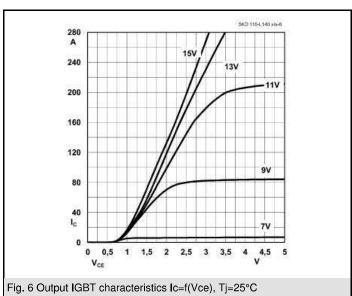

- DC drives
- Controlled filed rectifiers for DC motors
- Controlled battery charger

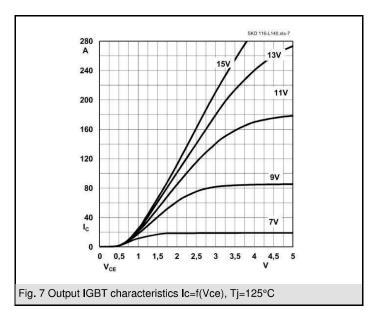

V _{RSM}	V _{RRM} , V _{DRM}	I _D = 110 A (maximum value for continuous operation)			
V	V	(T _s = 85 °C)			
1300	1200	SKD 116/12-L140			
1700	1600	SKD116/16-L140			

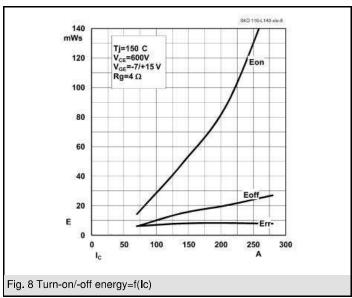

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specifie							
Symbol	Conditions	Values	Units				
Bridge - Rectifier							
I _D	T _s = 85 °C; inductive load	110	Α				
I _{FSM} /I _{TSM}	$t_p = 10 \text{ ms}; \sin 180^\circ; T_{jmax}$	1050	Α				
i²t	t _p = 10 ms; sin 180°; T _{jmax}	5500	A²s				
IGBT - Chopper							
V _{CES} /V _{GES}		1200 / 20	V				
I _C	$T_s = 25 (70) ^{\circ}C$	150 (120)	Α				
I _{CM}	$t_p = 1 \text{ ms}; T_s = 25 (70) ^{\circ}\text{C}$	520	Α				
Freewheeling - CAL Diode							
V_{RRM}		1200	V				
I _F	$T_s = 25 (70) ^{\circ}C$	130 (105)	Α				
I _{FM}	$t_p = 1 \text{ ms; } T_s = 25 (70) \text{ °C}$	450	Α				
T _{vi}	Diode & IGBT (Thyristor)	- 40 + 175 (-40+ 125)	°C				
T _{stg}		- 40 + 125	°C				
T _{solder}	terminals, 10 s	260	°C				
V _{isol}	a.c. (50) Hz, RMS 1 min. / 1 s	3000 / 3600	V				

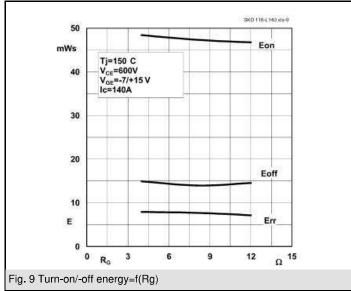

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristics		T _s = 25 °C,	T _s = 25 °C, unless otherwise specified			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Conditions	min.	typ.	max.	Units	
$ \begin{array}{ c c c c }\hline R_{th(j-s)} & per diode & 1 & K/W \\ \hline \textbf{IGBT - Chopper} \\ V_{CE(sat)} & I_C = 140 \text{A, T}_j = 25 ^{\circ}\text{C;} & 1,85 & 2,1 & V \\ \hline R_{th(j-s)} & per IGBT & 0,38 & K/W \\ \hline t_{d(on)} / t_r & valid for all values: & 97 / 185 & ns \\ \hline t_{d(off)} / t_f & V_{CC} = 600 V; V_{GE} = 15 V; & 443 / 82 & ns \\ \hline I_C = 140 \text{A; T}_j = 150 ^{\circ}\text{C;} & 443 / 82 & ns \\ \hline I_C = 140 \text{A; T}_j = 150 ^{\circ}\text{C;} & 63,3 & mJ \\ \hline \textbf{CAL - Diode - Freewheeling} \\ \hline V_{T(TO)} / r_t & T_j = 150 ^{\circ}\text{C} & 0,9 / 7,8 & 1,1 / 8,6 & V/m\Omega \\ \hline R_{RRM} & valid for all values: & 30 & A \\ \hline Q_{rr} & I_F = 140 \text{A; } V_R = -600 \text{V;} & 9 & \mu \text{C} \\ \hline \textbf{Temperature Sensor} \\ \hline R_{TS} & T = 25 (100) ^{\circ}\text{C;} & 1000 (1670) & \Omega \\ \hline \end{array} $	-						
$ \begin{array}{ c c c c } \hline \textbf{IGBT - Chopper} \\ V_{CE(sat)} & _{L} = 140 \text{ A, } T_{j} = 25 \text{ °C}; \\ V_{GE} = 15 \text{ V} \\ \hline \\ R_{th(j-s)} & \text{per IGBT} \\ \hline \\ t_{d(on)} / t_{r} & \text{valid for all values:} \\ t_{d(off)} / t_{f} & _{V_{CC}} = 600 \text{ V; } V_{GE} = 15 \text{ V; } \\ I_{C} = 140 \text{ A; } T_{j} = 150 \text{ °C;} \\ \hline \\ E_{on} + E_{off} & _{T_{j}} = 150 \text{ °C; } R_{G} = 4 \Omega; \\ & _{inductive load} \\ \hline \hline \\ \hline $	V_{TO} / r_{t}	T _j = 125 °C		0,8 / 7		V / mΩ	
$ \begin{array}{ c c c c } \hline \textbf{IGBT - Chopper} \\ V_{CE(sat)} & _{L} = 140 \text{ A, } T_{j} = 25 \text{ °C}; \\ V_{GE} = 15 \text{ V} \\ \hline \\ R_{th(j-s)} & \text{per IGBT} \\ \hline \\ t_{d(on)} / t_{r} & \text{valid for all values:} \\ t_{d(off)} / t_{f} & _{V_{CC}} = 600 \text{ V; } V_{GE} = 15 \text{ V; } \\ I_{C} = 140 \text{ A; } T_{j} = 150 \text{ °C;} \\ \hline \\ E_{on} + E_{off} & _{T_{j}} = 150 \text{ °C; } R_{G} = 4 \Omega; \\ & _{inductive load} \\ \hline \hline \\ \hline $	R _{th(j-s)}	per diode			1	K/W	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		opper					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{CE(sat)}	I _C = 140 A, T _j = 25 °C; V _{GE} = 15 V		1,85	2,1	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _{th(j-s)}	per IGBT		0,38		K/W	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		valid for all values:		97 / 185		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V_{CC} = 600 V; V_{GE} = 15 V; I_{C} = 140 A; T_{i} = 150 °C;		443 / 82		ns	
	$E_{on}+E_{off}$	$T_{i} = 150 ^{\circ}\text{C}; R_{G} = 4 \Omega;$		63,3		mJ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		inductive load					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CAL - Diode - Freewheeling						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{T(TO)} / r_t$	T _j = 150 °C		0,9 / 7,8	1,1 / 8,6	V / mΩ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _{th(j-s)}	per diode		0,56		K/W	
E_{off} $V_{GE} = 0 \text{ V}; T_j = 150 \text{ °C}$ 7,92 mJ Temperature Sensor R _{TS} T = 25 (100) °C; 1000 (1670) Ω	I _{RRM}			30		Α	
Temperature Sensor R_{TS} $T = 25 (100) ^{\circ}C;$ $1000 (1670)$ Ω	Q _{rr}	$I_F = 140 \text{ A}; V_R = -600 \text{ V};$ $dI_F/dt = -1700 \text{ A}/\mu\text{s}$		9		μC	
R_{TS} $T = 25 (100) ^{\circ}C;$	E _{off}	$V_{GE} = 0 \text{ V}; T_j = 150 ^{\circ}\text{C}$		7,92		mJ	
19	Temperature Sensor						
Mechanical data	-	1		1000 (1670)		Ω	
1 1	Mechanical data						
M _S mounting Torque 2,55 3,45 Nm	M _S	mounting Torque	2,55		3,45	Nm	

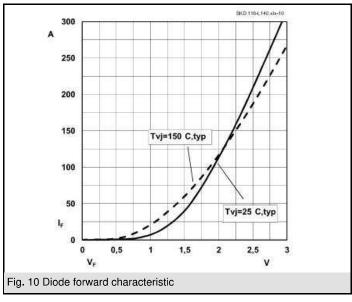


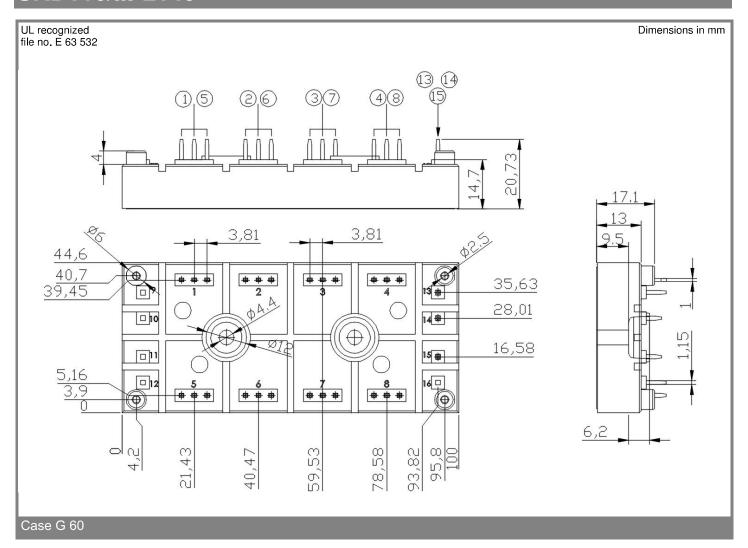


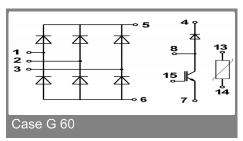












3 29-10-2018 MDL © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.