

Fiche technique

Vanne de régulation indépendante de la pression dotée d'un régulateur de débit intégré

AFQM 6 DN 40, 50 - montage sur le départ ou le retour

Description

L'AFQM 6 est un régulateur de débit autonome équipé d'une vanne de régulation intégrée avec autorité totale, principalement utilisé dans les systèmes de chauffage urbain. Le régulateur se ferme en cas de dépassement du débit maximum réglé. Associé aux actionneurs électriques Danfoss AMV(E), il peut être contrôlé par des régulateurs électroniques ECL.

L'AFQM 6 est indépendant de la pression, ce qui signifie que la caractéristique de régulation n'est ni liée à la pression disponible, ni influencée par une faible autorité.

Ce régulateur est équipé d'une vanne de régulation dotée d'un limiteur de débit ajustable, d'un col de raccordement pour l'actionneur électrique et d'un actionneur avec une membrane d'équilibrage. La vanne de contrôle AFQM 6 DN40-50 n'est pas dépressurisée.

Les régulateurs sont utilisés avec les actionneurs électriques Danfoss :

- AFQM 6 PN 16/25 DN 40-50 ³⁾
 - AMV(E) 65x sans fonction de rappel par ressort et avec fonctionnement manuel :
 - AMV(E) 655 fonction de rappel par ressort et fonctionnement manuel :
 - AMV(E) 658 SD 2)

Fonction de rappel par ressort, sansfonctionnement mécanique:

- AMV(E) 659 SD 1)
- AFQM 6 PN 16/25 DN 40-50
 - AMV(E) 55, 56
 - 1) Approvato DIN (secondo EN 14597)
 - non agréé DIN
 - ³⁾ Pour les régulateurs AFQM 6 PN 16/25 et AFQM PN PN 25/40 fabriqués avant mars 2015, un adaptateur (code 065B3527) doit être commandé séparément

Données principales :

- DN 40-50
- k_{vs} 20-32 m³/h
- Plage de débit 2,2-16 m³/h
- PN 16, 25, 40
 - * PN 40 sur demande
- Limiteur de débit Δp_{MCV}: 0,2 ou 0,5 bar
- Température :
 - Eau de circulation/eau glycolée jusqu'à 30 % : 2 ... 150 °C pour DN 40-50
- Raccords:
 - Brides
- AFQM 6 et AFQM combinés avec AMV(E) 659 SD ont été homologués DIN selon EN 14597.

© Danfoss | 2024.08 Al164086472580fr-000901 | 1

Commande

Exemple de commande : Régulateur de débit avec vanne de régulation intégrée, DN 50, $k_{\rm VS}$ 32, PN 16, limiteur de débit $\Delta p_{\text{\tiny MCV}}$ 0,2 bar, tmax.150 °C, bride

1× régulateur AFQM DN 50 N° de code : **003G1083**

Le régulateur est livré complètement monté, avec des tubes d'impulsion entre la vanne et l'actionneur. L'actionneur électrique AMV(E) doit être commandé séparément.

Régulateur **AFQM 6**

Illustration	DN	k _{vs}	PN	Raccord	Code
		m³/h			$\Delta P_{MCV} = 0.2 \text{ bar}$
	40	20	16	Bride EN 1092-1	003G1082
	50	32			003G1083
	40	20	25	Dride EN 1092-1	003G1084
	50	32			003G1085

Kits de maintenance

<u></u>	Désignation	Pour régulateur	Δp _{мcν} (bar)	Code
	Actionneur	AFQM 6	0,2	003G1024

Données techniques

Vanne AFOM 6

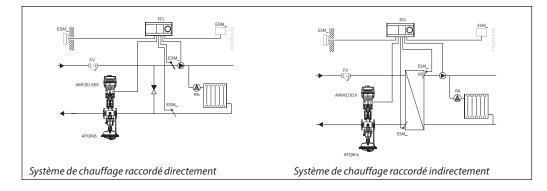
Diamètre nominal	DN	40	50	
Valeur k _{vs}	3 /la	20	32	
Réglage débit max. (Q_{max}) $\Delta p_{MCV}^{1)} = 0.2$ bar	m³/h	11	16	
Course	mm	8	12	
Autorité de vanne de régulation	%	100		
Caractéristique de régulation		Linéai	re³)	
Facteur z de cavitation		0,55	0,5	
Taux de fuite selon CEI 534	% de k _{vs}	≤ 0,01		
Pression nominale	PN	16, 25		
Pression différentielle min.		voir remarque ²⁾		
Pression différentielle max. PN 16	bar	16		
Pression différentielle max. PN 25		20		
Fluide		Eau de circulation/eau glycolée jusqu'à 30%		
pH du fluide		Min. 7, m	ax. 10	
Température du fluide	°C	2 150		
Raccords		À bride		
Matériaux				
Corrected to the correct	PN 16	Fonte grise EN-GJL-250 (GG-25)		
Corps de la vanne	PN 25	Fonte ductile EN-GJS-400-18-LT (GGG-40.3)		
Siège de vanne DP, CV		Acier inoxydable mat. n° 1.4021		
Cône de vanne DP, CV		Acier inoxydable mat. n° 1.4404		
Joint DP		EPDM		
Joint CV		Métal		
Système de limitation régulation	vanne de on	-		
de pression	vanne	Soufflet (acier inoxydable mat. n° 1.4571)		

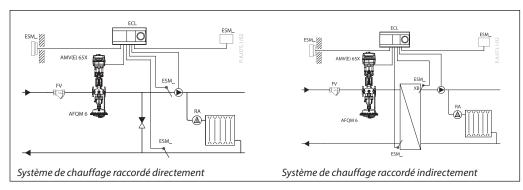
Remarque:

Remarque: DP - régulateur de pression diff., CV - vanne de régulation DP - régulateur de pression différentielle dans le limiteur de débit De pression différentielle dans le limiteur de débit $Dépend du débit et de la vanne k_{vs}; pour Q_{det} = Q_{max}. > \Delta p_{min} \ge 0,5 \ bar; pour Q_{det} < Q_{max}. > \Delta p_{min} = \left(\frac{Q}{k_{VS}}\right)^2 + \Delta p_{MCV}$ Possibilité de conversion logarithmique par l'actionneur AME 65x

Actionneur AFQM 6

Pour vanne	DN	40	50		
Taille de l'actionneur cm²		250			
Pression d'utilisation max.		25			
Pression diff. limiteur de débit ΔP _{MCV}	bar	0,2			
Matériaux					
Corps		Acier inoxydable mat, n° 1.0338			
Diaphragme		EPDM (à déroulement ; renforcée à la fibre de verre)			
Tube d'impulsion		Tube d'acier inoxydable Ø10 × 0,8 mm			

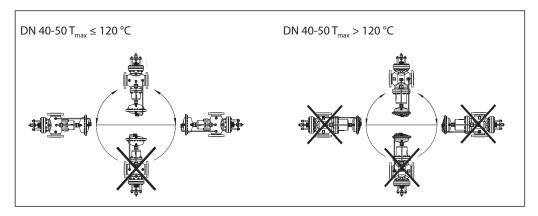

2 | Al164086472580fr-000901 © Danfoss | 2024.08


Principes d'application

- Montage sur le retour

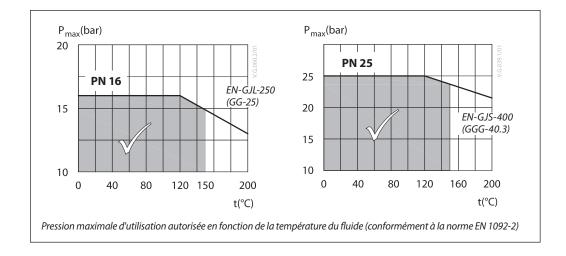
Fiche technique

- Montage sur le départ


Positions d'installation

DN 40-50 $T_{max.} \le 120$ °C

Les régulateurs peuvent être installés avec le col de raccordement orienté à l'horizontale ou vers le haut.


DN 40-50 $T_{max.} > 120 \, ^{\circ}C$

Les régulateurs peuvent être installés avec le col de raccordement orienté vers le haut.

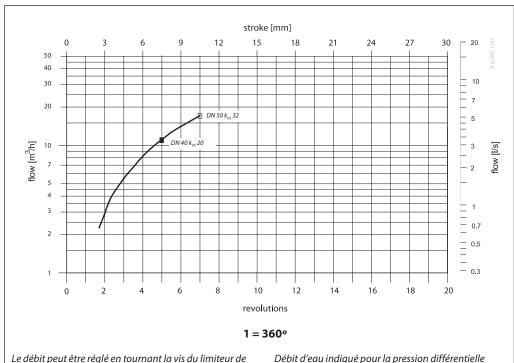

Schéma de pression/ température

Schéma de débit

Schéma de dimensionnement et de réglage

Relation entre le débit réel et le nombre de tours au niveau du réducteur de débit. Les valeurs données sont approximatives.

Le débit peut être réglé en tournant la vis du limiteur de débit dans le sens inverse des aiguilles d'une montre, comme illustré dans ce schéma. Le débit ne doit pas être limité à moins de 20 % de la capacité maximale de la vanne.

Débit d'eau indiqué pour la pression différentielle dans le limiteur de débit à **0,2 bar** (20 kPa) et dans le régulateur de 0,5 bar (50 kPa) à la pression diff. max.

4 | Al164086472580fr-000901 © Danfoss | 2024.08

Dimensionnement

Système de chauffage raccordé directement

Exemple 1

Dans les systèmes de chauffage raccordés directement, la vanne de régulation motorisée (MCV) pour le circuit mélangeur implique une pression différentielle de 0,2 bar (20 kPa) et un débit inférieur à 8 000 l/h.

Données fournies:

 $\boldsymbol{Q}_{\text{max}}$ $= 8.0 \text{ m}^3/\text{h} (8 000 \text{ l/h})$ Δp_{min} = 0.8 bar (80 kPa) $\Delta p_{\text{circuit}}^{\text{min}} = 0.05 \text{ Bdr (30 kPa)}$ $\Delta p_{\text{circuit}}^{\text{1}} = 0.1 \text{ bar (10 kPa)}$

 $\Delta p_{MCV} = 0.2 \text{ bar } (20 \text{ kPa}) \text{ sélectionné}$

 $\Delta p_{circuit}$ correspond à la pression requise de la pompe du circuit de chauffage et n'est pas pris en compte lors du dimensionnement de l'AFQM.

La perte de charge totale (disponible) dans le régulateur est la suivante :

 $\Delta p_{AFQM,A} = \Delta p_{min.}$ $\Delta p_{AFQM,A} = 0.8 \text{ bar (80 kPa)}$

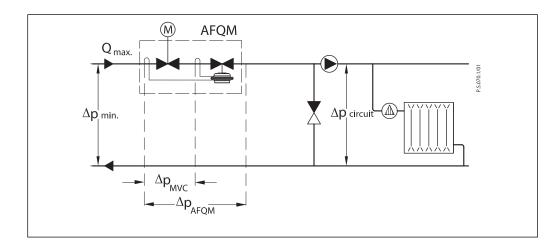
Les éventuelles pertes de charge dans les tuyaux, les raccords d'arrêt, les compteurs de chaleur, etc., ne sont pas comptabilisées.

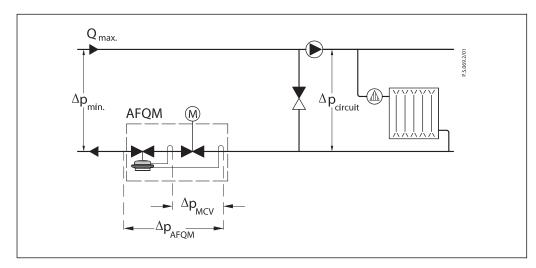
Sélectionnez le régulateur à partir du schéma de débit (page 4) avec la valeur k_{vs} la plus faible possible, compte tenu des plages de débit disponibles.

$$k_{vs} = 20 \text{ m}^3/\text{h}$$

La pression différentielle minimale requise dans le régulateur sélectionné est calculée avec la formule suivante:

$$\Delta p_{AFQM,MIN} = \left(\frac{Q_{max}}{k_{VS}}\right)^2 + \Delta p_{MCV} = \left(\frac{8,0}{20}\right)^2 + 0,2$$

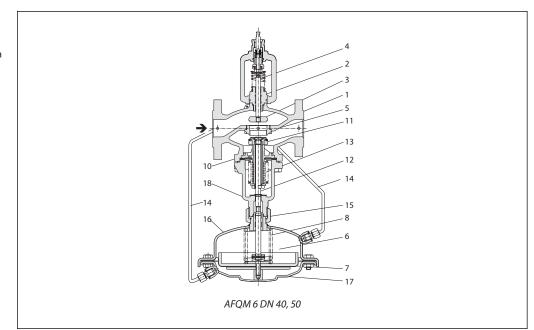

 $\Delta p_{AFQM,MIN.} = 0.36 \text{ bar } (36 \text{ kPa})$


 $\Delta p_{AFQM,A} > \Delta p_{AFQM,MIN.}$

0,8 bar > 0,36 bar

Solution:

L'exemple sélectionne AFQM 6 DN 40, avec la valeur k_{VS} 20 et la plage de régulation du débit de 2,2 à -11 m³/h.



Conception

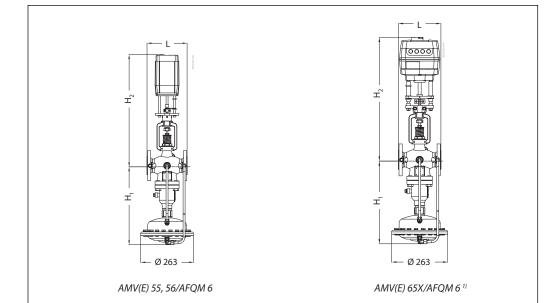
- 1. Corps de la vanne
- 2. Insert de vanne de régulation
- 3. Limiteur de débit réglable
- **4.** Tige de la vanne de régulation
- 5. Siège de la vanne
- 6. Actionneur
- **7.** Diaphragme d'équilibrage pour la régulation du débit
- 8. Ressort intégré pour la régulation du débit
- **9.** Vanne de sécurité pour excès de pression
- 10. Insert de vanne
- **11.** Cône de vanne à ouverture par pression
- 12. Tige de la vanne
- **13.** Soufflet d'équilibrage de pression du cône de vanne
- 14. Tube d'impulsion
- **15.** Écrou
- **16.** Carter supérieur du diaphragme
- **17.** Carter inférieur du diaphragme
- **18.** Couvercle

Fonctionnement

La variation du débit entraîne la modification de pression dans le limiteur de débit ajustable. Les pressions engendrées sont transférées par les tubes d'impulsion aux chambres de l'actionneur, où elles agissent sur le diaphragme d'équilibrage pour réguler le débit. La pression différentielle du limiteur de débit est régulée et limitée au moyen du ressort intégré pour la régulation du débit. La vanne de régulation se ferme lorsque la pression différentielle augmente et s'ouvre

lorsque la pression différentielle diminue pour réguler le débit max.

De plus, l'actionneur électrique fonctionne d'un débit nul au débit maximal réglé, en fonction de la charge.


Réglages

Régulation du débit

La régulation du débit s'effectue en ajustant la position du limiteur de débit. Cette position peut être ajustée à l'aide du schéma d'ajustement du débit (voir instructions correspondantes) et/ou à l'aide du compteur de chaleur.

Dimensions

DN	L H ₁ H ₂		Poids de la vanne	
mm				(kg)
40	200	390	645	17
50	230	390	645	22

DN	L	H ₁	H ₂	Poids de la vanne	
DN		mm		(kg)	
40	200	390	590	17	
50	230	390	590	22	

Pour les régulateurs AFQM 6 PN 16/25 et AFQM PN 25/40 fabriqués avant mars 2015, un adaptateur (code 065B3527) doit être commandé séparément

© Danfoss | 2024.08 Al164086472580fr-000901 | 7

Fiche technique **AFQM 6 DN 40, 50**

Danfoss Sarl

Climate Solutions • danfoss.fr • +33 (0)1 82 88 64 64 • cscfrance@danfoss.com

Toutes les informations, incluant sans s'y limiter, les informations sur la sélection du produit, son application ou son utilisation, son design, son poids, ses dimensions, sa capacité ou toute autre donnée technique mentionnée dans les manuels du produit, les catalogues, les descriptions, les publicités, etc., qu'elles soient diffusées par écrit, oralement, électroniquement, sur internet ou par téléchargement, sont considérées comme purement indicatives et ne sont contraignantes que si et dans la mesure où elles font explicitement référence à un devis ou une confirmation de commande. Danfoss n'assume aucune responsabilité quant aux erreurs qui se seraient glissées dans les catalogues, brochures, vidéos et autres documentations. Danfoss se réserve le droit d'apporter sans préavis toutes modifications à ses produits. Cela s'applique également aux produits commandés mais non livrés, si ces modifications n'affectent pas la forme, l'adéquation ou le fonctionnement du produit.

Toutes les marques commerciales citées dans ce document sont la propriété de Danfoss A/S ou des sociétés du groupe Danfoss. Danfoss et le logo Danfoss sont des marques déposées de Danfoss A/S. Tous droits réservés.