

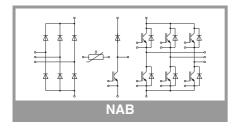
MiniSKiiP® 3

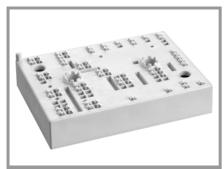
Converter-Inverter-Brake (CIB)

SKiiP 35NAB12T4V1

Features*

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532


Typical Applications


- Inverter up to 26 kVA
- Typical motor power 15 kW

- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{i,on}=-40...+150°C)
- T_{j,op}=-40...+150°C)

 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

Absolute	Maximum Rating	s		
Symbol	Conditions		Values	Unit
Inverter -	IGBT			
V _{CES}	T _j = 25 °C		1200	V
Ic	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	69	А
T _j = 175 °C		T _s = 70 °C	55	Α
I _C	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	77	А
	T _j = 175 °C	T _s = 70 °C	63	А
I _{Cnom}		•	50	Α
I _{CRM}			150	Α
V _{GES}			-20 20	V
t _{psc}	$V_{CC} = 800 \text{ V}$ $V_{GE} \le 15 \text{ V}$ $V_{CES} \le 1200 \text{ V}$	T _j = 150 °C	10	μs
T _i	020		-40 175	°C
Chopper	- IGBT			ı
V _{CES}	T _i = 25 °C		1200	V
Ic	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	68	Α
	T _i = 175 °C	T _s = 70 °C	55	А
I _C	λ_{paste} =2.5 W/(mK)	T _s = 25 °C	77	А
	T _j = 175 °C	T _s = 70 °C	63	Α
I _{Cnom}	, , , , , , , , , , , , , , , , , , , ,		50	А
I _{CRM}			150	Α
V _{GES}			-20 20	V
t _{psc}	$V_{CC} = 800 \text{ V}$ $V_{GE} \le 15 \text{ V}$ $V_{CES} \le 1200 \text{ V}$	T _j = 150 °C	10	μs
T _i	OLO	1	-40 175	°C
Inverse -	Diode			l
V _{RRM}	T _i = 25 °C		1200	V
I _F	$\lambda_{\text{paste}} = 0.8 \text{ W/(mK)}$	T _s = 25 °C	60	A
	$T_i = 175 ^{\circ}\text{C}$	T _s = 70 °C	48	Α
l _F	λ_{paste} =2.5 W/(mK)	T _s = 25 °C	68	Α
· ·	$T_i = 175 ^{\circ}\text{C}$	T _s = 70 °C	54	Α
I _{FRM}		1 0	150	А
I _{FSM}	$t_p = 10 \text{ ms}, \sin 180^\circ$	°, T _i = 150 °C	270	А
T _i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· , -	-40 175	°C
	eling - Diode			
V _{RRM}	T _i = 25 °C		1200	V
I _F	$\lambda_{\text{paste}} = 0.8 \text{ W/(mK)}$	T _s = 25 °C	60	A
IF.	$\Lambda_{\text{paste}} = 0.8 \text{ W/(mK)}$ $T_i = 175 ^{\circ}\text{C}$	$T_s = 70 ^{\circ}\text{C}$	48	A
l _E	<u> </u>	$T_s = 70^{\circ} \text{C}$ $T_s = 25^{\circ} \text{C}$	68	A
l _F	λ_{paste} =2.5 W/(mK) T _i = 175 °C	$T_s = 25 \text{ C}$ $T_s = 70 \text{ °C}$	54	A
I	1., - 1.0 0	18-70 0	150	A
IFRM	t = 10 mg sin 1909	° T. = 150 °C		
I _{FSM}	$t_p = 10 \text{ ms, sin } 180^\circ$, 1 _j = 150 °C	270	A
Tj			-40 175	°C

MiniSKiiP® 3

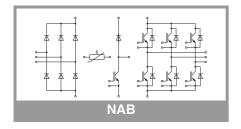
Converter-Inverter-Brake (CIB)

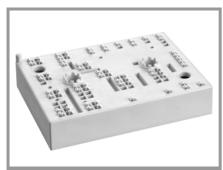
SKiiP 35NAB12T4V1

Features*

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

Typical Applications


- Inverter up to 26 kVA
- Typical motor power 15 kW


- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{i,on}=-40...+150°C)
- T_{j,op}=-40...+150°C)

 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

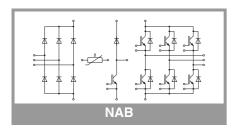
Absolute Maximum Ratings						
Symbol	Conditions		Values	Unit		
Rectifier -	Diode					
V_{RRM}	T _j = 25 °C		1600	V		
I _F	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	81	Α		
	T _j = 150 °C	T _s = 70 °C	60	Α		
I _F	λ_{paste} =2.5 W/(mK) T _j = 150 °C	T _s = 25 °C	92	Α		
		T _s = 70 °C	68	Α		
I _{FSM}	$t_p = 10 \text{ ms}$ sin 180°	T _j = 25 °C	700	Α		
		T _j = 150 °C	490	Α		
i ² t	$t_p = 10 \text{ ms}$	T _j = 25 °C	2500	A ² s		
sin 18	sin 180°	T _j = 150 °C	1200	A ² s		
T _j			-40 150	°C		
Module						
I _{t(RMS)}	T _{terminal} = 80 °C, 20 A per spring		80	Α		
T _{stg}	module without TIM		-40 125	°C		
V _{isol}	AC sinus 50 Hz, 1 min		2500	V		

Characteristics								
Symbol	Conditions		min.	typ.	max.	Unit		
Inverter -	Inverter - IGBT							
V _{CE(sat)}	$I_{\rm C} = 50 {\rm A}$	T _j = 25 °C		1.85	2.10	V		
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.20	2.40	V		
V_{CE0}	chiplevel	T _j = 25 °C		0.80	0.90	V		
	Chipievei	T _j = 150 °C		0.70	0.80	V		
r _{CE}	$V_{GE} = 15 \text{ V}$	T _j = 25 °C		21	24	mΩ		
	chiplevel	T _j = 150 °C		30	32	mΩ		
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		5	5.8	6.5	V		
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 12$	00 V, T _j = 25 °C			1	mA		
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		2.77		nF		
C _{oes}		f = 1 MHz		0.21		nF		
C _{res}		f = 1 MHz		0.16		nF		
Q_{G}	V _{GE} = - 8 V+ 15 V			280		nC		
R _{Gint}	T _j = 25 °C			4.0		Ω		
t _{d(on)}	$V_{CC} = 600 \text{ V}$	T _j = 150 °C		60		ns		
t _r	$I_{\rm C} = 50 {\rm A}$	T _j = 150 °C		35		ns		
E _{on}	$R_{G \text{ on}} = 15 \Omega$ $R_{G \text{ off}} = 15 \Omega$ $di/dt_{on} = 1700 \text{ A/}\mu\text{s}$	T _j = 150 °C		6		mJ		
t _{d(off)}		T _j = 150 °C		370		ns		
t _f	di/dt _{off} = 650 A/μs	T _j = 150 °C		60		ns		
E _{off}	V _{GE} = +15/-15 V	T _j = 150 °C		4.7		mJ		
R _{th(j-s)}	per IGBT, λ _{paste} =0.8	3 W/(mK)		0.71		K/W		
$R_{th(j-s)}$	per IGBT, λ _{paste} =2.5 W/(mK)			0.57		K/W		

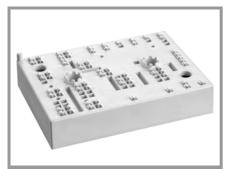
MiniSKiiP® 3

Converter-Inverter-Brake (CIB)

SKiiP 35NAB12T4V1


Features*

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532


Typical Applications

- Inverter up to 26 kVA
- Typical motor power 15 kW

- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{i on}=-40...+150°C)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

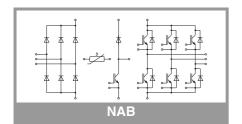
Characte	eristics					
Symbol	Conditions		min.	typ.	max.	Unit
Chopper				71		
V _{CE(sat)}	I _C = 50 A	T _i = 25 °C		1.85	2.10	V
OL(Sat)	V _{GE} = 15 V	T _i = 150 °C		2.20	2.40	V
\/	chiplevel	-				
V _{CE0}	chiplevel	$T_j = 25 ^{\circ}\text{C}$ $T_i = 150 ^{\circ}\text{C}$		0.80	0.90	V
r	V 45.V	T _i = 150 °C		0.70	0.80	mΩ
r _{CE}	V _{GE} = 15 V chiplevel	T _i = 150 °C		30	32	mΩ
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 2 \text{ m}$	l '	5	5.8	6.5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 12$			3.0	1	mA
C _{ies}	VGE	f = 1 MHz		2.77		nF
Coes	$V_{CE} = 25 \text{ V}$	f = 1 MHz		0.21		nF
C _{res}	$V_{GE} = 0 V$	f = 1 MHz		0.16		nF
Q _G	V _{GE} = - 8 V+ 15 V			280		nC
R _{Gint}	T _i = 25 °C			4.0		Ω
t _{d(on)}	V _{CC} = 600 V	T _i = 150 °C		60		ns
t _r	$I_{\rm C} = 50 \text{ A}$	T _i = 150 °C		35		ns
E _{on}	$R_{G \text{ on}} = 15 \Omega$ $R_{G \text{ off}} = 15 \Omega$	T _i = 150 °C		6		mJ
t _{d(off)}	☐ NG off — 13 22	T _j = 150 °C		370		ns
t _f		T _j = 150 °C		60		ns
E _{off}	V _{GE} = +15/-15 V	T _j = 150 °C		4.7		mJ
R _{th(j-s)}	per IGBT, λ _{paste} =0.8	I 3 W/(mK)		0.71		K/W
R _{th(j-s)}	per IGBT, λ _{paste} =2.5 W/(mK)			0.57		K/W
Inverse -	· · · · · · · · · · · · · · · · · · ·	,	II			<u> </u>
$V_F = V_{EC}$	I _F = 50 A	T _i = 25 °C		2.22	2.54	V
	V _{GE} = 0 V	T _i = 150 °C		2.18	2.50	V
	chiplevel	T _i = 25 °C				
V _{F0}	chiplevel	,		1.30	1.50	V
		$T_j = 150 ^{\circ}\text{C}$ $T_i = 25 ^{\circ}\text{C}$		0.90	21	1
r _F	chiplevel	T _i = 150 °C		26	28	mΩ mΩ
	I _F = 50 A	T _i = 150 °C		45	20	A
Q _{rr}	di/dt _{off} = 1400 A/μs	T: = 150 °C		8.6		μC
	VGE = -15 V	T _i = 150 °C				-
Err	V _{CC} = 600 V	l ·		3.4		mJ
R _{th(j-s)}	per Diode, $\lambda_{paste}=0$. per Diode, $\lambda_{paste}=2$.			0.95		K/W
R _{th(j-s)}		5 W/(IIIK)		0.79		K/W
	eling - Diode	T 05 00	1	0.00	0.54	
$V_F = V_{EC}$	$V_{GE} = 0 V$	T _j = 25 °C		2.22	2.54	V
	chiplevel	T _j = 150 °C		2.18	2.50	V
17		T _j = 25 °C		1.30	1.50	V
V _{F0}	⊣ chiplevel			0.90	1.10	V
V _{F0}	chiplevel	T _j = 150 °C		0.30		
r _F		T _j = 25 °C		18	21	mΩ
	chiplevel	T _j = 25 °C T _j = 150 °C		18 26		mΩ mΩ
	chiplevel	$T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$		18 26 45	21	
r _F	chiplevel $I_F = 50 \text{ A}$ $di/dt_{off} = 1400 \text{ A/}\mu\text{s}$	$T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$		18 26	21	mΩ
r _F	chiplevel	$T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$		18 26 45	21	mΩ A
r _F	chiplevel $I_F = 50 \text{ A}$ $di/dt_{off} = 1400 \text{ A/}\mu\text{s}$ $V_{GE} = -15 \text{ V}$	$T_{j} = 25 ^{\circ}\text{C}$ $T_{j} = 150 ^{\circ}\text{C}$ $T_{j} = 150 ^{\circ}\text{C}$ $T_{j} = 150 ^{\circ}\text{C}$ $T_{j} = 150 ^{\circ}\text{C}$		18 26 45 8.6	21	mΩ A μC

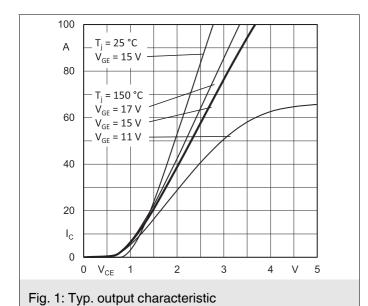
MiniSKiiP® 3

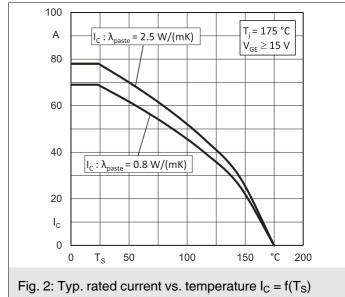
Converter-Inverter-Brake (CIB)

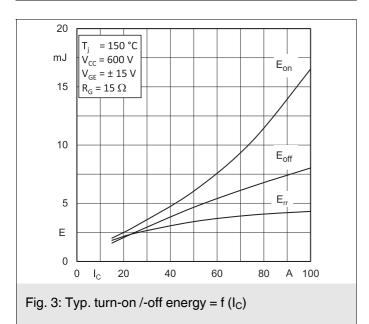
SKiiP 35NAB12T4V1

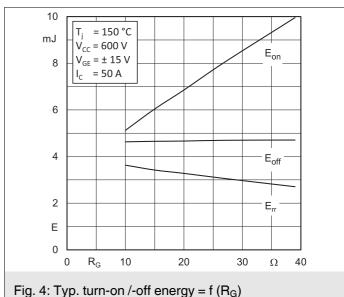
Features*

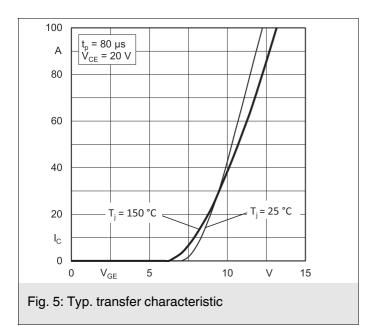

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

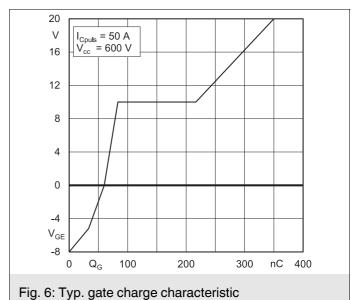

Typical Applications

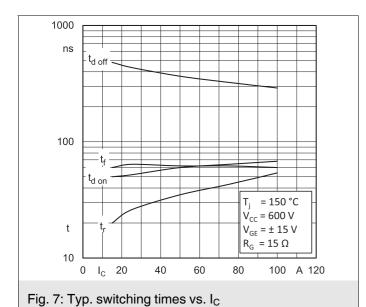

- Inverter up to 26 kVA
- Typical motor power 15 kW

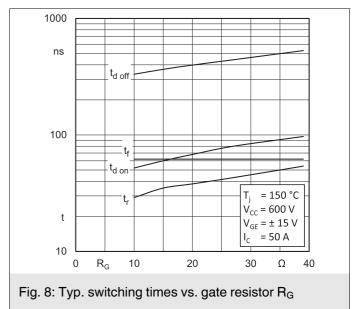

- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{i on}=-40...+150°C)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

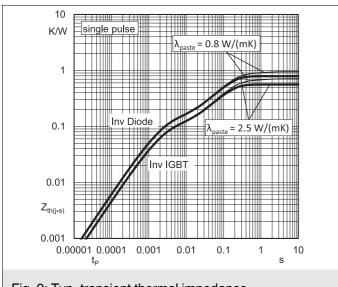

Characteristics							
Symbol	Conditions		min.	typ.	max.	Unit	
Rectifier -	Diode						
$V_F = V_{EC}$	I _F = 25 A	T _j = 25 °C		1.00	1.21	V	
	chiplevel	T _j = 125 °C		0.90	1.10	V	
V_{F0}	chiplevel	T _j = 25 °C		0.88	0.98	V	
	Criipievei	T _j = 125 °C		0.73	0.83	V	
r _F	chiplevel	T _j = 25 °C		4.8	9.2	mΩ	
		T _j = 125 °C		6.8	11	mΩ	
I _R	T _j = 145 °C, V _{RRM}				1.1	mA	
R _{th(j-s)}	per Diode, λ _{paste} =0.8 W/(mK)			0.9		K/W	
R _{th(j-s)}	per Diode, λ _{paste} =2.5 W/(mK)			0.75		K/W	
Module							
Ms	to heat sink		2		2.5	Nm	
w				82		g	
L _{CE}				-		nH	
Temperat	ure Sensor						
R ₁₀₀	T _r =100°C (R ₂₅ =1000Ω)			1670 ± 3%		Ω	
R _(T)	$\begin{aligned} &R_{(T)} = 1000\Omega[1 + A(T-25^{\circ}C) + B(T-25^{\circ}C)^{2}]\\ &, A = 7.635^{*}10^{-3^{\circ}}C^{-1},\\ &B = 1.731^{*}10^{-5^{\circ}}C^{-2} \end{aligned}$						

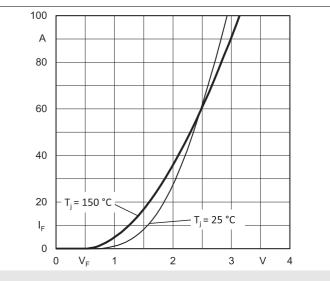


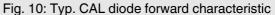












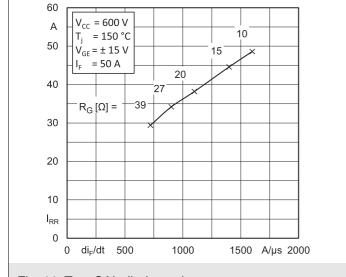


Fig. 11: Typ. CAL diode peak reverse recovery current

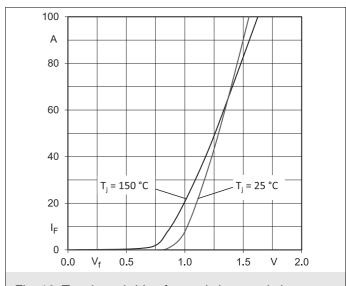
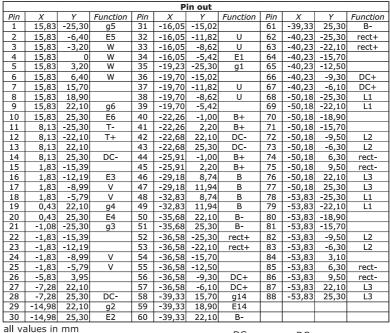
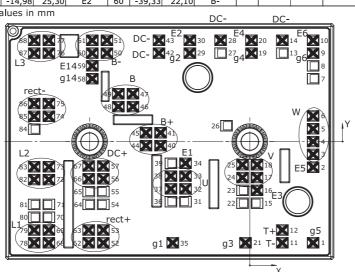
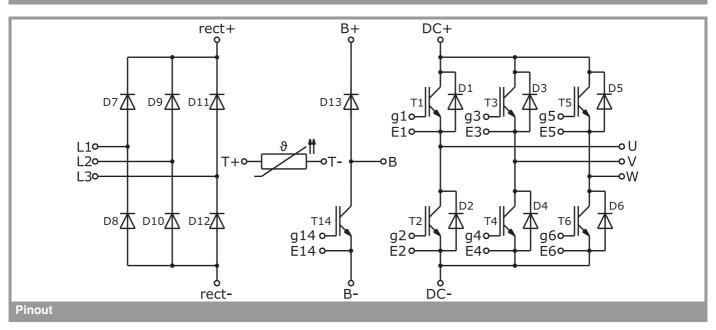





Fig. 12: Typ. input bridge forward characteristic

Pinout and Dimensions

This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.

8 Rev. 7.0 – 27.09.2021 © by SEMIKRON