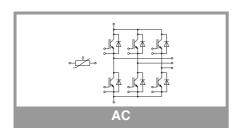



## MiniSKiiP® 3

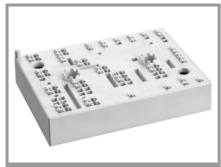
### Sixpack

#### SKiiP 37AC12T7V1

#### Features\*


- 1200V Generation 7 IGBTs (T7)
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

#### **Remarks**


- Max. case temperature limited to  $T_C = T_S = 125\ ^{\circ}C$
- Product reliability results valid for T<sub>j</sub> ≤ 150 °C; T<sub>j,op</sub> > 150 °C during overload (Details see AN19-002)
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document "Technical Explanations Thermal Interface Materials"

| Absolute            | Maximum Rating                                                                  | gs                          |         |      |
|---------------------|---------------------------------------------------------------------------------|-----------------------------|---------|------|
| Symbol              | Conditions                                                                      |                             | Values  | Unit |
| Inverter -          | IGBT                                                                            |                             |         |      |
| V <sub>CES</sub>    |                                                                                 |                             | 1200    | V    |
| Ic                  | P12 (reference)                                                                 | T <sub>s</sub> = 70 °C      | 79      | Α    |
|                     | T <sub>j</sub> = 175 °C                                                         | T <sub>s</sub> = 100 °C     | 64      | А    |
| Ic                  | HPTP                                                                            | T <sub>s</sub> = 70 °C      | 93      | А    |
|                     | T <sub>j</sub> = 175 °C                                                         | T <sub>s</sub> = 100 °C     | 75      | Α    |
| I <sub>Cnom</sub>   |                                                                                 |                             | 75      | Α    |
| I <sub>CRM</sub>    |                                                                                 |                             | 150     | Α    |
| V <sub>GES</sub>    |                                                                                 |                             | -20 20  | V    |
| t <sub>psc</sub>    | $V_{CC} = 800 \text{ V}$ $V_{GE} \le 15 \text{ V}$ $V_{CES} \le 1200 \text{ V}$ | T <sub>j</sub> = 175 °C     | 7       | μs   |
| Tj                  |                                                                                 |                             | -40 175 | °C   |
| Inverse -           | Diode                                                                           |                             |         |      |
| $V_{RRM}$           | T <sub>j</sub> = 25 °C                                                          |                             | 1200    | V    |
| l <sub>F</sub>      | P12 (reference)                                                                 | T <sub>s</sub> = 70 °C      | 65      | Α    |
|                     | T <sub>j</sub> = 175 °C                                                         | T <sub>s</sub> = 100 °C     | 52      | Α    |
| l <sub>F</sub>      | HPTP                                                                            | T <sub>s</sub> = 70 °C      | 75      | Α    |
|                     | T <sub>j</sub> = 175 °C                                                         | T <sub>s</sub> = 100 °C     | 60      | Α    |
| I <sub>FRM</sub>    |                                                                                 |                             | 150     | А    |
| I <sub>FSM</sub>    | $t_p = 10 \text{ ms, sin } 180$                                                 | 0°, T <sub>j</sub> = 150 °C | 430     | Α    |
| Tj                  |                                                                                 |                             | -40 175 | °C   |
| Module              |                                                                                 |                             |         |      |
| I <sub>t(RMS)</sub> | T <sub>terminal</sub> = 80 °C, 2                                                | 0 A per spring              | 160     | Α    |
| T <sub>stg</sub>    | module without T                                                                | IM                          | -40 125 | °C   |
| V <sub>isol</sub>   | AC sinus 50 Hz, t                                                               | = 1 min                     | 2500    | V    |

| Characteristics      |                                                   |                         |      |       |      |      |  |  |
|----------------------|---------------------------------------------------|-------------------------|------|-------|------|------|--|--|
| Symbol               | Conditions                                        |                         | min. | typ.  | max. | Unit |  |  |
| Inverter -           | IGBT                                              |                         | •    |       |      | •    |  |  |
| V <sub>CE(sat)</sub> | I <sub>C</sub> = 75 A                             | T <sub>j</sub> = 25 °C  |      | 1.55  | 1.70 | V    |  |  |
|                      | V <sub>GE</sub> = 15 V<br>chiplevel               | T <sub>j</sub> = 150 °C |      | 1.69  | 1.84 | V    |  |  |
|                      |                                                   | T <sub>j</sub> = 175 °C |      | 1.72  | 1.87 | V    |  |  |
| $V_{CE0}$            |                                                   | T <sub>j</sub> = 25 °C  |      | 1.00  | 1.08 | V    |  |  |
|                      | chiplevel                                         | T <sub>j</sub> = 150 °C |      | 0.85  | 0.93 | V    |  |  |
|                      |                                                   | T <sub>j</sub> = 175 °C |      | 0.75  | 0.83 | V    |  |  |
| r <sub>CE</sub>      | V <sub>GE</sub> = 15 V<br>chiplevel               | T <sub>j</sub> = 25 °C  |      | 7.3   | 8.3  | mΩ   |  |  |
|                      |                                                   | T <sub>j</sub> = 150 °C |      | 11    | 12   | mΩ   |  |  |
|                      |                                                   | T <sub>j</sub> = 175 °C |      | 13    | 14   | mΩ   |  |  |
| $V_{\text{GE(th)}}$  | $V_{GE} = V_{CE}$ , $I_C = 1.7$                   | mA                      | 5.15 | 5.8   | 6.45 | V    |  |  |
| I <sub>CES</sub>     | $V_{GE} = 0 \text{ V}, V_{CE} = 1$                |                         |      | 1     | mA   |      |  |  |
| C <sub>ies</sub>     | V 05.V                                            | f = 1 MHz               |      | 15.10 |      | nF   |  |  |
| C <sub>oes</sub>     | $V_{CE} = 25 \text{ V}$<br>$V_{GE} = 0 \text{ V}$ | f = 1 MHz               |      | 0.19  |      | nF   |  |  |
| C <sub>res</sub>     | GE - V                                            | f = 1 MHz               |      | 0.54  |      | nF   |  |  |
| $Q_G$                | V <sub>GE</sub> = - 8 V + 15                      |                         | 1050 |       | nC   |      |  |  |
| R <sub>Gint</sub>    | T <sub>j</sub> = 25 °C                            |                         |      | 2.0   |      | Ω    |  |  |

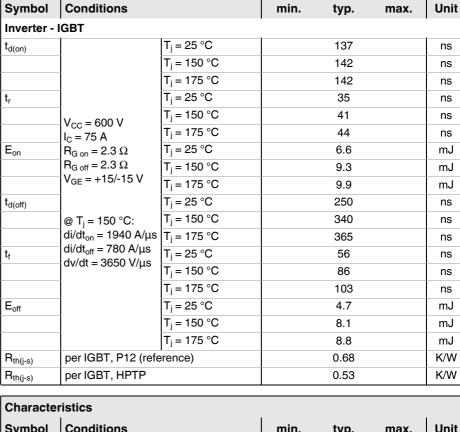


Characteristics

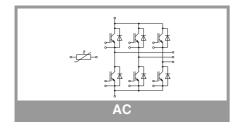


### MiniSKiiP® 3

### Sixpack


#### SKiiP 37AC12T7V1

#### Features\*


- 1200V Generation 7 IGBTs (T7)
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

#### Remarks

- Max. case temperature limited to  $T_C = T_S = 125 \, ^{\circ}C$
- Product reliability results valid for T<sub>j</sub> ≤ 150 °C; T<sub>j,op</sub> > 150 °C during overload (Details see AN19-002)
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document "Technical Explanations Thermal Interface Materials"



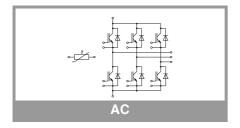
| Characte             | ristics                          |                         |      |      |      |      |
|----------------------|----------------------------------|-------------------------|------|------|------|------|
| Symbol               | Conditions                       |                         | min. | typ. | max. | Unit |
| Inverse -            | Diode                            |                         | •    |      |      | •    |
| $V_F = V_{EC}$       | I <sub>F</sub> = 75 A            | T <sub>j</sub> = 25 °C  |      | 2.17 | 2.49 | V    |
|                      | $V_{GE} = 0 V$                   | T <sub>j</sub> = 150 °C |      | 2.11 | 2.42 | V    |
|                      | chiplevel                        | T <sub>j</sub> = 175 °C |      | 1.96 | 2.27 | V    |
| $V_{F0}$             |                                  | T <sub>j</sub> = 25 °C  |      | 1.30 | 1.50 | V    |
|                      | chiplevel                        | T <sub>j</sub> = 150 °C |      | 0.90 | 1.10 | V    |
|                      |                                  | T <sub>j</sub> = 175 °C |      | 0.82 | 0.98 | V    |
| r <sub>F</sub>       |                                  | T <sub>j</sub> = 25 °C  |      | 12   | 13   | mΩ   |
|                      | chiplevel                        | T <sub>j</sub> = 150 °C |      | 16   | 18   | mΩ   |
|                      |                                  | T <sub>j</sub> = 175 °C |      | 15   | 17   | mΩ   |
| I <sub>RRM</sub>     |                                  | T <sub>j</sub> = 25 °C  |      | 50   |      | Α    |
|                      |                                  | T <sub>j</sub> = 150 °C |      | 67   |      | Α    |
|                      | I <sub>F</sub> = 75 A            | T <sub>j</sub> = 175 °C |      | 80   |      | Α    |
| Q <sub>rr</sub>      | $V_{GE} = +15/-15 \text{ V}$     | T <sub>j</sub> = 25 °C  |      | 4    |      | μC   |
|                      | V <sub>CC</sub> = 600 V          | T <sub>j</sub> = 150 °C |      | 11.6 |      | μС   |
|                      | @ T <sub>i</sub> = 150 °C:       | T <sub>j</sub> = 175 °C |      | 12.2 |      | μC   |
| E <sub>rr</sub>      | di/dt <sub>off</sub> = 1930 A/μs | T <sub>j</sub> = 25 °C  |      | 1.3  |      | mJ   |
|                      |                                  | T <sub>j</sub> = 150 °C |      | 4.3  |      |      |
|                      |                                  | T <sub>j</sub> = 175 °C |      | 5.7  |      | mJ   |
| R <sub>th(j-s)</sub> | per Diode, P12 (ref              |                         | 0.77 |      | K/W  |      |
| R <sub>th(j-s)</sub> | per Diode, HPTP                  |                         | 0.62 |      | K/W  |      |
| Module               |                                  |                         | •    |      |      | •    |
| L <sub>CE</sub>      |                                  |                         |      | -    |      | nΗ   |
| Ms                   | to heat sink                     | 2                       |      | 2.5  | Nm   |      |
| W                    |                                  |                         |      | 82   |      | g    |

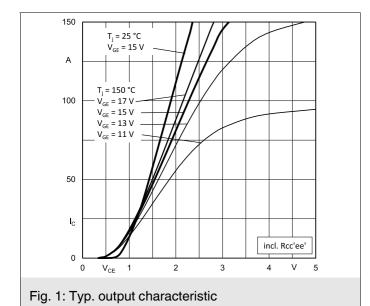


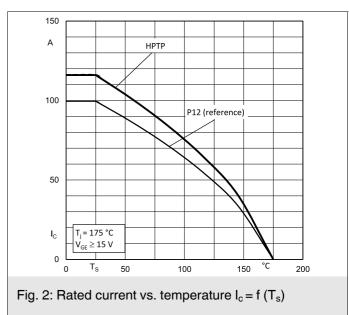


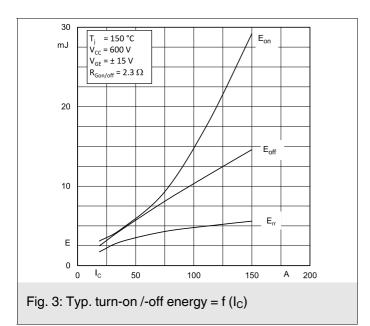
| Characteristics  |                                                                                                                                                                                     |      |              |      |      |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|------|--|--|--|--|
| Symbol           | Conditions                                                                                                                                                                          | min. | typ.         | max. | Unit |  |  |  |  |
| Temperat         | ure Sensor                                                                                                                                                                          |      |              |      |      |  |  |  |  |
| R <sub>100</sub> | T <sub>r</sub> =100°C (R <sub>25</sub> =1000Ω)                                                                                                                                      |      | 1670 ±<br>3% |      | Ω    |  |  |  |  |
| R <sub>(T)</sub> | $\begin{aligned} R_{(T)} &= 1000\Omega[1 + A(T-25^{\circ}C) + B(T-25^{\circ}C)^{2}]\\ , \ A &= 7.635^{*}10^{-3^{\circ}}C^{-1},\\ B &= 1.731^{*}10^{-5^{\circ}}C^{-2} \end{aligned}$ |      |              |      |      |  |  |  |  |

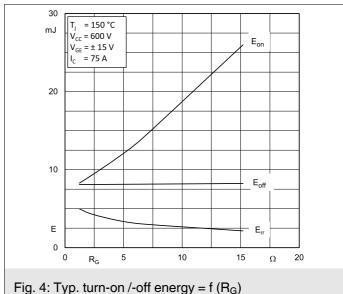
### Sixpack

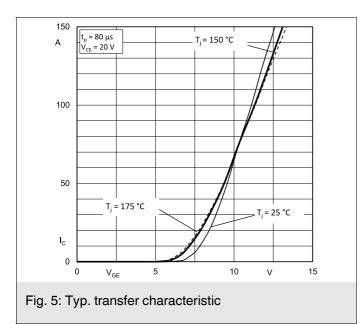

#### SKiiP 37AC12T7V1

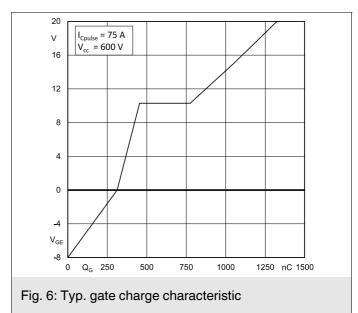

#### Features\*

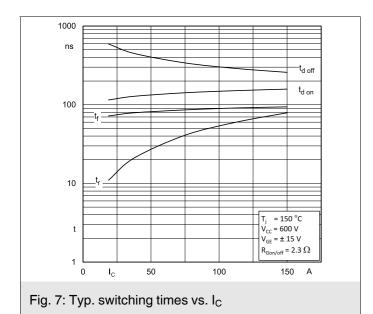

- 1200V Generation 7 IGBTs (T7)
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

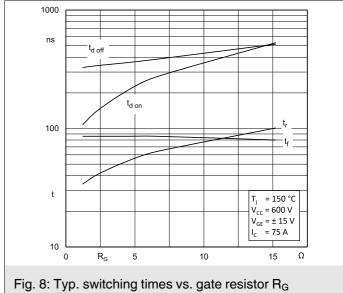

#### **Remarks**

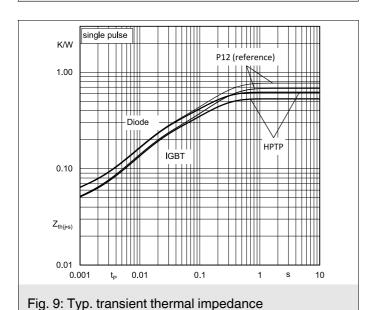

- Max. case temperature limited to  $T_C = T_S = 125 \, ^{\circ}C$
- Product reliability results valid for T<sub>j</sub> ≤ 150 °C; T<sub>j,op</sub> > 150 °C during overload (Details see AN19-002)
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document "Technical Explanations Thermal Interface Materials"

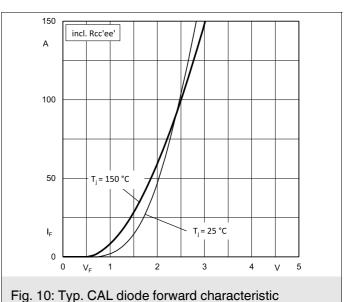


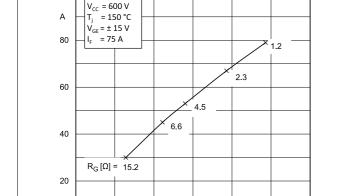














100

 $I_{RR}$ 

0

di<sub>F</sub>/dt

Tig. 10. Typ. CAL Glode forward characteristic



2000

1000

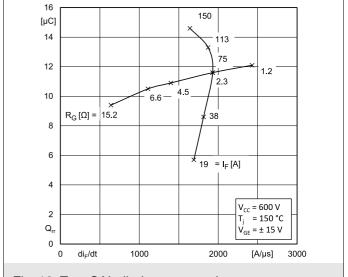
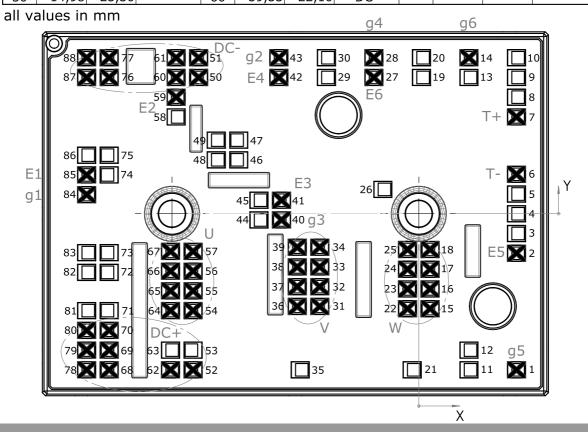
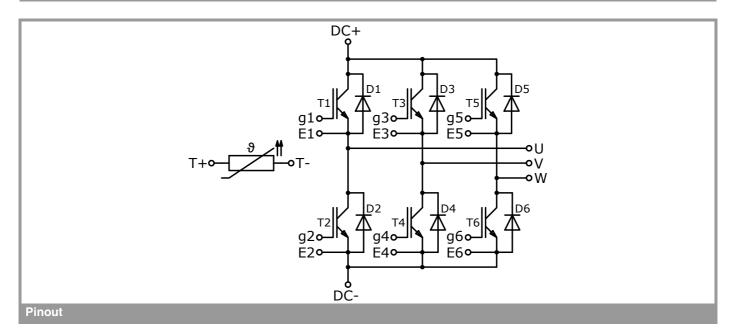




Fig. 12: Typ. CAL diode recovery charge


3000

**Pinout** 

| Pin out |        |        |          |     |        |        |          |     |        |        |          |
|---------|--------|--------|----------|-----|--------|--------|----------|-----|--------|--------|----------|
| Pin     | X      | Y      | Function | Pin | Χ      | Y      | Function | Pin | Χ      | Y      | Function |
| 1       | 15,83  | -25,30 | g5       | 31  | -16,05 | -15,02 | V        | 61  | -39,33 | 25,30  | DC-      |
| 2       | 15,83  | -6,40  | E5       | 32  | -16,05 | -11,82 | V        | 62  | -40,23 | -25,30 | DC+      |
| 3       | 15,83  | -3,20  |          | 33  | -16,05 | -8,62  | V        | 63  | -40,23 | -22,10 |          |
| 4       | 15,83  | 0      |          | 34  | -16,05 | -5,42  | V        | 64  | -40,23 | -15,70 | U        |
| 5       | 15,83  | 3,20   |          | 35  | -19,23 | -25,30 |          | 65  | -40,23 | -12,50 | U        |
| 6       | 15,83  | 6,40   | T-       | 36  | -19,70 | -15,02 | V        | 66  | -40,23 | -9,30  | U        |
| 7       | 15,83  | 15,70  | T+       | 37  | -19,70 | -11,82 | V        | 67  | -40,23 | -6,10  | U        |
| 8       | 15,83  | 18,90  |          | 38  | -19,70 |        |          | 68  | -50,18 | -25,30 | DC+      |
| 9       | 15,83  | 22,10  |          | 39  | -19,70 | -5,42  | V        | 69  | -50,18 | -22,10 | DC+      |
| 10      | 15,83  | 25,30  |          | 40  | -22,26 |        | g3       | 70  | -50,18 | -18,90 | DC+      |
| 11      | 8,13   | -25,30 |          | 41  | -22,26 | 2,20   | E3       | 71  | -50,18 | -15,70 |          |
| 12      | 8,13   | -22,10 |          | 42  | -22,68 | 22,10  | E4       | 72  | -50,18 | -9,50  |          |
| 13      | 8,13   | 22,10  |          | 43  | -22,68 |        |          | 73  | -50,18 |        |          |
| 14      | 8,13   | 25,30  | g6       | 44  | -25,91 | -1,00  |          | 74  | -50,18 | 6,30   |          |
| 15      | 1,83   | -15,39 | W        | 45  | -25,91 | 2,20   |          | 75  | -50,18 | 9,50   |          |
| 16      | 1,83   | -12,19 | W        | 46  | -29,18 | 8,74   |          | 76  | -50,18 | 22,10  | DC-      |
| 17      | 1,83   | -8,99  | W        | 47  | -29,18 |        |          | 77  | -50,18 | 25,30  | DC-      |
| 18      | 1,83   | -5,79  | W        | 48  | -32,83 | 8,74   |          | 78  | -53,83 | -25,30 | DC+      |
| 19      | 0,43   | 22,10  |          | 49  | -32,83 | 11,94  |          | 79  | -53,83 | -22,10 | DC+      |
| 20      | 0,43   | 25,30  |          | 50  | -35,68 | 22,10  | DC-      | 80  | -53,83 | -18,90 | DC+      |
| 21      | -1,08  | -25,30 |          | 51  | -35,68 | 25,30  | DC-      | 81  | -53,83 | -15,70 |          |
| 22      | -1,83  | -15,39 | W        | 52  | -36,58 | -25,30 | DC+      | 82  | -53,83 | -9,50  |          |
| 23      | -1,83  | -12,19 | W        | 53  | -36,58 | -22,10 |          | 83  | -53,83 | -6,30  |          |
| 24      | -1,83  | -8,99  | W        | 54  | -36,58 |        | U        | 84  | -53,83 | 3,10   | g1       |
| 25      | -1,83  | -5,79  | W        | 55  | -36,58 |        | U        | 85  | -53,83 | 6,30   | E1       |
| 26      | -5,83  | 3,95   |          | 56  | -36,58 |        | U        | 86  | -53,83 | 9,50   |          |
| 27      | -7,28  | 22,10  | E6       | 57  | -36,58 | -6,10  | U        | 87  | -53,83 | 22,10  | DC-      |
| 28      | -7,28  | 25,30  | g4       | 58  | -39,33 | 15,70  |          | 88  | -53,83 | 25,30  | DC-      |
| 29      | -14,98 | 22,10  |          | 59  | -39,33 | 18,90  | E2       |     |        |        |          |
| 30      | -14,98 | 25,30  |          | 60  | -39,33 | 22,10  | DC-      |     |        |        |          |



6 Rev. 3.0 – 30.11.2023 © by SEMIKRON



#### **IMPORTANT INFORMATION AND WARNINGS**

This is an electrostatic discharge sensitive device (ESDS) according to international standard IEC 61340.

\*The specifications of Semikron Danfoss products may not be considered as any guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of Semikron Danfoss products describe only the usual characteristics of Semikron Danfoss products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Resulting from this, application adjustments of any kind may be necessary. Any user of Semikron Danfoss products is responsible for the safety of their applications embedding Semikron Danfoss products and must take adequate safety measures to prevent the applications from causing any physical injury, fire or other problem, also if any Semikron Danfoss product becomes faulty. Any user is responsible for making sure that the application design and realization are compliant with all laws, regulations, norms and standards applicable to the scope of application. Unless otherwise explicitly approved by Semikron Danfoss in a written document signed by authorized representatives of Semikron Danfoss, Semikron Danfoss products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Semikron Danfoss does not convey any license under its or a third party's patent rights, copyrights, trade secrets or other intellectual property rights, neither does it make any representation or warranty of non-infringement of intellectual property rights of any third party which may arise from a user's applications.