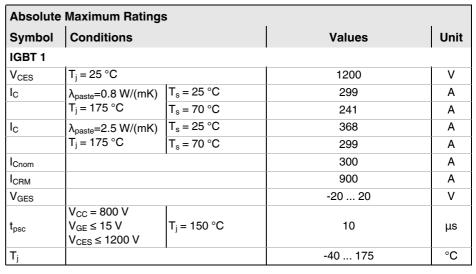


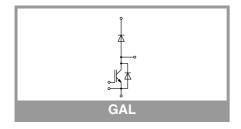
Boost Chopper


SKiiP38GAL12E4V1

Features*

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532
- NTC T-Sensor

Remarks


- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations"
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document: "Technical Explanations Thermal Interface Materials"
- Diode 1 = D1
- Diode 2 = D2
- IGBT 1 = T2

Absolute Maximum Ratings							
Symbol	Conditions		Values	Unit			
Diode 1	•			•			
V_{RRM}	T _j = 25 °C		1200	V			
I _F	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	274	Α			
	T _j = 175 °C	T _s = 70 °C	217	Α			
I _F	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	327	Α			
	T _j = 175 °C	T _s = 70 °C	260	Α			
I _{FRM}			600	Α			
I _{FSM}	10 ms	T _j = 25 °C	1485	Α			
	sin 180°	T _j = 150 °C	1485	Α			
T _i			-40 175	°C			

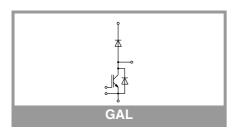
Absolute Maximum Ratings							
Symbol	Conditions		Values	Unit			
Diode 2				•			
V_{RRM}	T _j = 25 °C		1200	V			
I _F	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	17	Α			
	T _j = 175 °C	T _s = 70 °C	13	Α			
I _F	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	17	Α			
	T _j = 175 °C	T _s = 70 °C	14	Α			
I _{FRM}			16	Α			
I _{FSM}	10 ms	T _j = 25 °C	36	Α			
	sin 180°	T _j = 150 °C	36	Α			
Tj		,	-40 175	°C			

Absolute Maximum Ratings							
Symbol	Conditions	Values	Unit				
Module							
I _{t(RMS)}	20 A per spring	280	Α				
T _{stg}	module without TIM	-40 125	°C				
V _{isol}	AC sinus 50 Hz, t = 1 min	2500	V				

Boost Chopper

SKiiP38GAL12E4V1

Features*


- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532
- NTC T-Sensor

Remarks

- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations"
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document: "Technical Explanations Thermal Interface Materials"
- Diode 1 = D1
- Diode 2 = D2
- IGBT 1 = T2

Characteristics								
Symbol	Conditions		min.	typ.	max.	Unit		
IGBT 1								
V _{CE(sat)}	I _C = 300 A	T _j = 25 °C		1.85	2.10	V		
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.25	2.45	V		
V_{CE0}	$ \begin{array}{c c} \textbf{I}_{C} = 300 \ \textbf{A} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{chiplevel} \\ \textbf{Chiplevel} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{chiplevel} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{Chiplevel} \\ \textbf{V}_{GE} = V_{CE}, \ \textbf{I}_{C} = 12 \\ \textbf{V}_{GE} = 0 \ \textbf{V}, \ \textbf{V}_{CE} = 13 \\ \textbf{V}_{CE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 0 \ \textbf{V} \\ \textbf{V}_{GE} = 0 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 300 \ \textbf{A} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{N} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{N} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{N} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{N} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 25 \ \textbf{N} \\ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V}_{GE} = 15 \ \textbf{V} \\ \textbf{V}_{GE} = 15 \ \textbf{V}_{GE} = 15 \ V$	T _j = 25 °C		0.80	0.90	V		
		T _j = 150 °C		0.70	0.80	V		
r _{CE}	V _{GE} = 15 V	T _j = 25 °C		3.5	4.0	mΩ		
	chiplevel	T _j = 150 °C		5.2	5.5	mΩ		
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_{C} = 12 \text{ r}$	nA	5	5.8	6.5	V		
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 12$			3.0	mA			
C _{ies}	$V_{GE} = 0 \text{ V}, V_{CE} = 1200$ $V_{CE} = 25 \text{ V}$ $V_{GE} = 0 \text{ V}$ f $V_{GE} = -8 \text{ V}+ 15 \text{ V}$ $T_{j} = 25 ^{\circ}\text{C}$	f = 1 MHz		17.60		nF		
Coes		f = 1 MHz		1.16		nF		
C _{res}		f = 1 MHz		0.94		nF		
Q_{G}	V _{GE} = - 8 V+ 15 V			1700		nC		
R _{Gint}	T _j = 25 °C			2.5		Ω		
t _{d(on)}		T _j = 150 °C		180		ns		
t _r	_	T _j = 150 °C		51		ns		
E _{on}		T _j = 150 °C		19		mJ		
t _{d(off)}		T _j = 150 °C		455		ns		
t _f	di/dt _{on} = 6995 A/μs	T _j = 150 °C		96		ns		
E _{off}	dv/dt = 5280 V/μs	T _j = 150 °C	34.6			mJ		
R _{th(j-s)}	per IGBT, λ _{paste} =0.8	3 W/(mK)		0.2		K/W		
R _{th(j-s)}	per IGBT, λ _{paste} =2.5	5 W/(mK)		0.14		K/W		

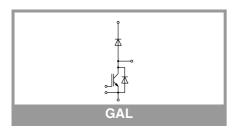
Characteristics								
Symbol	Conditions		min.	typ.	max.	Unit		
Diode 1						•		
V _F	I _F = 300 A	T _j = 25 °C		2.20	2.52	V		
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.15	2.47	V		
V_{F0}	chiplevel	T _j = 25 °C		1.30	1.50	V		
	Chipievei	T _j = 150 °C		0.90	1.10	V		
r _F	chiplevel	T _j = 25 °C		3.0	3.4	mΩ		
	Chipievei	T _j = 150 °C		4.2	4.6	mΩ		
I _{RRM}	I _F = 300 A	T _j = 150 °C		353		Α		
Q _{rr}	$di/dt_{off} = 7005 \text{ A/}\mu\text{s}$ $V_{GF} = -15 \text{ V}$	T _j = 150 °C		49		μC		
Err	V _{GE} = -15 V V _{CC} = 600 V	T _j = 150 °C		21.5		mJ		
R _{th(j-s)}	per Diode, $\lambda_{paste}=0$.	8 W/(mK)		0.25		K/W		
R _{th(j-s)}	per Diode, λ_{paste} =2.	5 W/(mK)		0.19		K/W		

Boost Chopper

SKiiP38GAL12E4V1

Features*

- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532
- NTC T-Sensor


Remarks

- Max. case temperature limited to T_C=125°C
- Product reliability results valid for T_j≤150°C (recommended T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations"
- MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information.
- For storage and case temperature with TIM see document: "Technical Explanations Thermal Interface Materials"
- Diode 1 = D1
- Diode 2 = D2
- IGBT 1 = T2

Characteristics								
Symbol	Conditions		min.	typ.	max.	Unit		
Diode 2	•							
V_{F}	I _F = 8 A	T _j = 25 °C		2.33	2.65	٧		
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.35	2.68	V		
V_{F0}	chiplevel	T _j = 25 °C		1.30	1.50	V		
	Chipievei	T _j = 150 °C		0.90	1.10	V		
r _F	chiplevel	T _j = 25 °C		129	144	mΩ		
	Chipievei	T _j = 150 °C		181	198	mΩ		
I _{RRM}	I _F = 8 A	T _j = 150 °C		t.b.d.		Α		
Q _{rr}	V _{GF} = -15 V	T _j = 150 °C		t.b.d.		μС		
E _{rr}	$V_{CC} = 600 \text{ V}$	T _j = 150 °C		t.b.d.		mJ		
R _{th(j-s)}	per Diode, λ _{paste} =0.8 W/(mK)			2.2		K/W		
R _{th(j-s)}	per Diode, λ_{paste}	=2.5 W/(mK)		2		K/W		

Characteristics								
Symbol	Conditions	min.	typ.	max.	Unit			
Module								
Ms	to heat sink	2		2.5	Nm			
W	weight		82		g			

Characteristics								
Symbol	Conditions	min.	typ.	max.	Unit			
Temperature Sensor								
R ₁₀₀	T _c =100°C (R ₂₅ =5 kΩ)		Ω					
B _{25/85}	$R_{(T)} = R_{25} * \exp[B_{25/85} * (1/T-1/298)], T[K]$	3420						

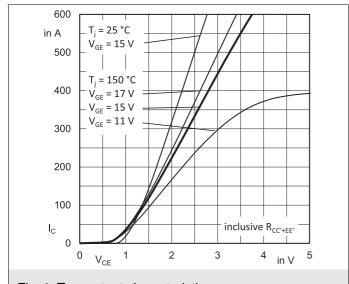


Fig. 1: Typ. output characteristic

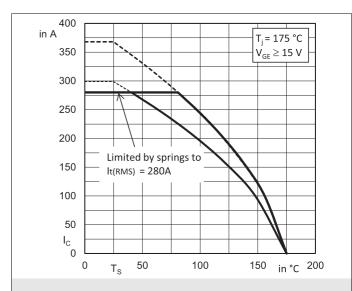


Fig. 2: Rated current vs. temperature $I_C = f(T_S)$

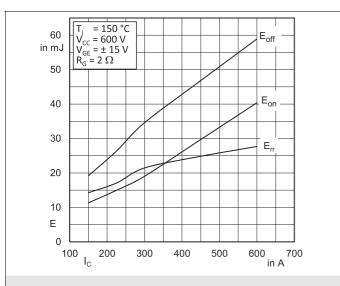


Fig. 3: Typ. turn-on /-off energy = $f(I_C)$

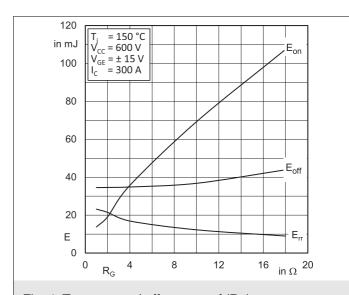


Fig. 4: Typ. turn-on /-off energy = $f(R_G)$

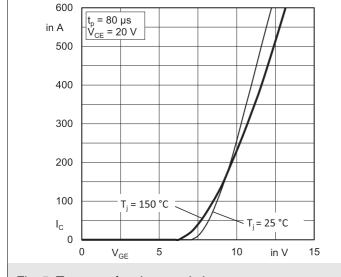


Fig. 5: Typ. transfer characteristic

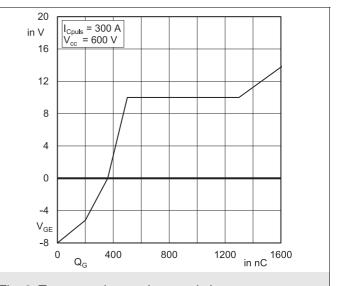
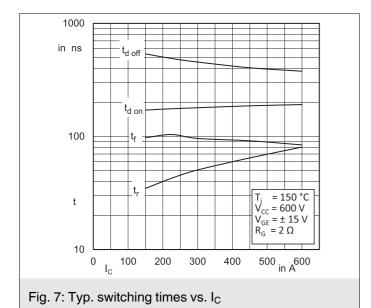



Fig. 6: Typ. gate charge characteristic

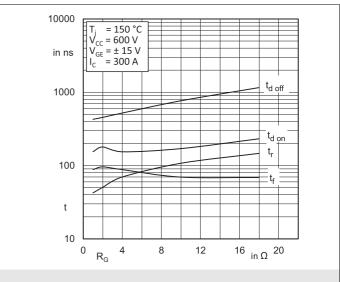
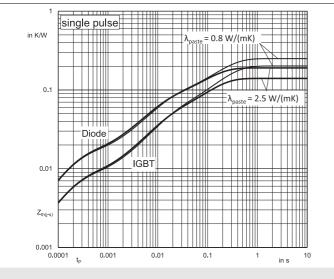



Fig. 8: Typ. switching times vs. gate resistor R_G

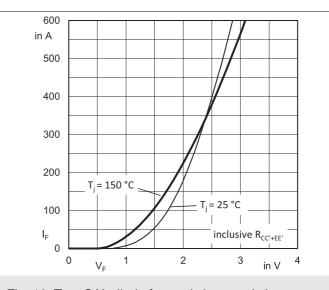


Fig. 10: Typ. CAL diode forward characteristic

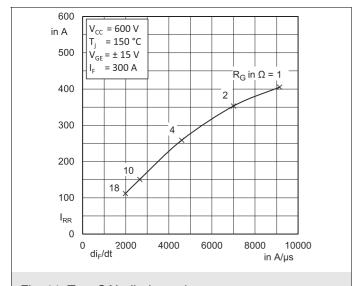
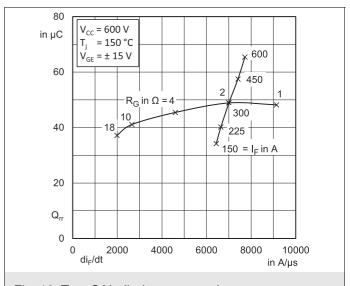
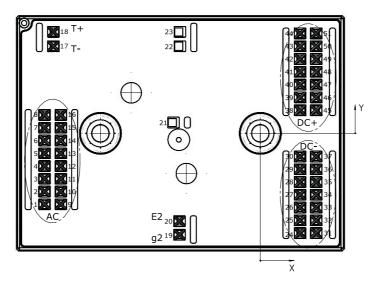
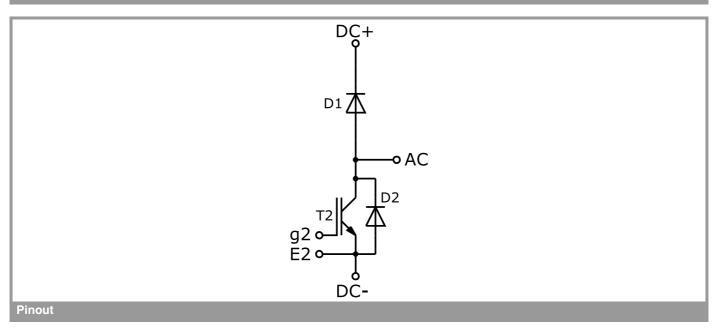


Fig. 11: Typ. CAL diode peak reverse recovery current


Fig. 12: Typ. CAL diode recovery charge

Pin out											
Pin	X	Υ	Function	Pin	X	Υ	Function	Pin	X	Υ	Function
1	-53,98	-17,80	AC	18	-51,78	25,40	T+	35	13,98	-12,20	DC-
2	-53,98	-14,60	AC	19	-20,23	-25,40	g2	36	13,98	-9,00	DC-
3	-53,98	-11,40	AC	20	-20,23	-22,00	E2	37	13,98	-5,80	DC-
4	- 53,98	- 8,20	AC	21	-21,73	2,70		38	9,93	5,80	DC+
5	- 53,98	-5,00	AC	22	-20,13	21,80		39	9,93	9,00	DC+
6	- 53,98	-1,80	AC	23	-20,13	25,40		40	9,93	12,20	DC+
7	- 53,98	1,40	AC	24	9,93	-25,00	DC-	41	9,93	15,40	DC+
8	- 53,98	4,60	AC	25	9,93	-21,80	DC-	42	9,93	18,60	DC+
9	- 49,93	-17,80	AC	26	9,93	-18,60	DC-	43	9,93	21,80	DC+
10	- 49,93	-14,60	AC	27	9,93	-15,40	DC-	44	9,93	25,00	DC+
11	- 49,93	-11,40	AC	28	9,93	-12,20	DC-	45	13,98	5,80	DC+
12	- 49,93	-8,20	AC	29	9,93	-9,00	DC-	46	13,98	9,00	DC+
13	- 49,93	-5,00	AC	30	9,93	- 5,80	DC-	47	13,98	12,20	DC+
14	-49,93	-1,80	AC	31	13,98	-25,00	DC-	48	13,98	15,40	DC+
15	-49,93	1,40	AC	32	13,98	-21,80	DC-	49	13,98	18,60	DC+
16	-49,93	4,60	AC	33	13,98	-18,60	DC-	50	13,98	21,80	DC+
17	-51,78	21,80	T-	34	13,98	-15,40	DC-	51	13,98	25,00	DC+

all values in [mm]

Pinout and Dimensions

This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.