

Trench IGBT Modules

SKM 600GA176D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x $\rm I_{C}$

Typical Applications*

- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

Remarks

• $I_{DC} \le 500 \text{ A limited for T}_{Terminal} = 100^{\circ}\text{C}$

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}	T _j = 25 °C	1700	V			
I _C	$T_j = 150 ^{\circ}\text{C}$ $T_c = 25 ^{\circ}\text{C}$	660	Α			
	T _c = 80 °C	470	Α			
I _{CRM}	I _{CRM} =2xI _{Cnom}	800	Α			
V_{GES}		± 20	V			
t _{psc}	V _{CC} = 1200 V; V _{GE} ≤ 20 V; T _i = 125 °C	10	μs			
	V _{CES} < 1700 V					
Inverse D	Diode					
I _F	$T_j = 150 ^{\circ}\text{C}$ $T_c = 25 ^{\circ}\text{C}$	600	Α			
	T _c = 80 °C	410	Α			
I _{FRM}	I _{FRM} =2xI _{Fnom}	800	Α			
I _{FSM}	$t_p = 10 \text{ ms; sin.}$ $T_j = 150 \text{ °C}$	3800	Α			
Module						
$I_{t(RMS)}$		500	Α			
T _{vj}		- 40 + 150	°C			
T _{stg}		- 40 + 125	°C			
V _{isol}	AC, 1 min.	4000	V			

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$		5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			4	mA
V_{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		2,5	3,1	mΩ
		T _j = 125°C		3,9	4,5	mΩ
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		2	2,45	V
		$T_j = 125^{\circ}C_{chiplev}$		2,45	2,9	V
C _{ies}				28,4		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,46		nF
C _{res}				1,17		nF
$t_{d(on)}$				290		ns
t _r E _{on}	$R_{Gon} = 3 \Omega$	V _{CC} = 1200V		70		ns
E _{on}		I _C = 400A		255		mJ
$t_{d(off)}$	$R_{Goff} = 3 \Omega$	T _j = 125 °C		890		ns
t _f		$V_{GE} = \pm 15V$		160		ns
E_{off}				155		mJ
R _{th(j-c)}	per IGBT				0,044	K/W

Trench IGBT Modules

SKM 600GA176D

Features

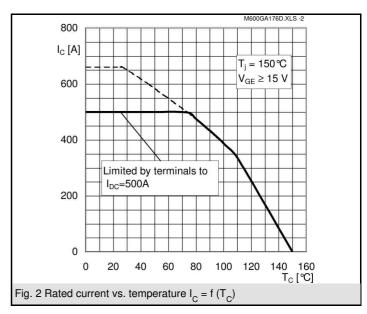
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

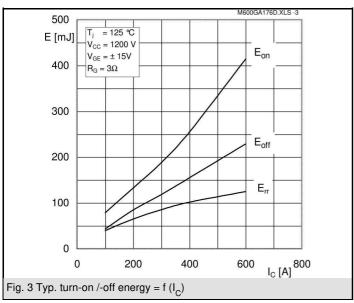
Typical Applications*

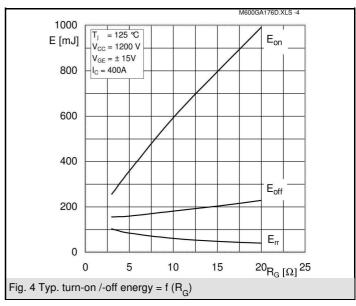
- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

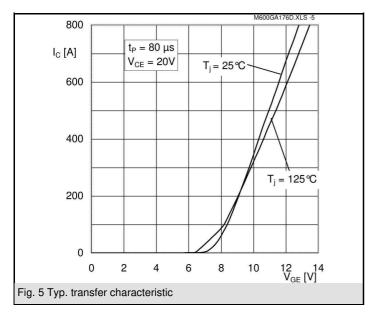
Remarks

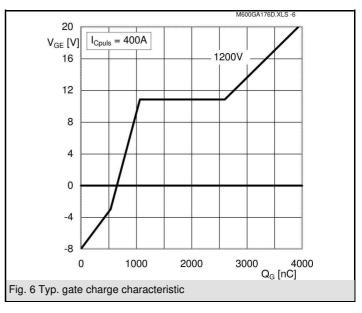

 I_{DC} ≤ 500 A limited for T_{Terminal} = 100°C

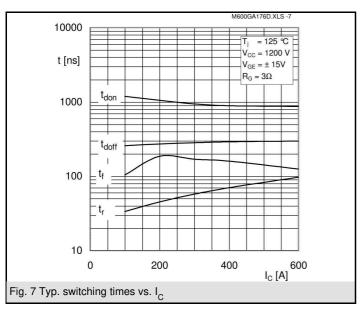

Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	$I_{Fnom} = 400 \text{ A}; V_{GE} = 0 \text{ V}$			1,6	1,9	V				
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,6	1,9	V				
V_{F0}		T _j = 25 °C		1,1	1,3	V				
r _F		T _j = 25 °C		1,3	1,5	$m\Omega$				
I _{RRM}	I _F = 400 A	T _i = 125 °C		510		Α				
Q_{rr}	di/dt = 5700 A/μs	•		155		μC				
E _{rr}	V _{GE} = -15V V; V _{CC} = 1200			102		mJ				
	V									
$R_{th(j-c)D}$	per diode				0,09	K/W				
Module										
L _{CE}				15	20	nΗ				
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ				
		T _{case} = 125 °C		0,22		mΩ				
R _{th(c-s)}	per module				0,038	K/W				
M_s	to heat sink M6		3		5	Nm				
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm				
w					330	g				

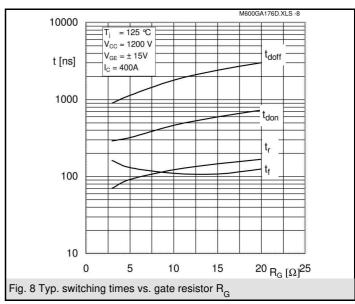

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

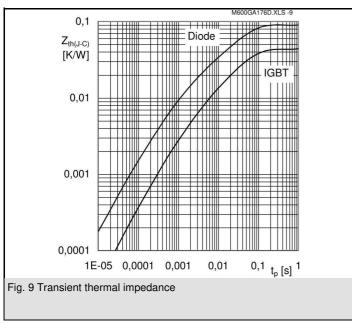

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

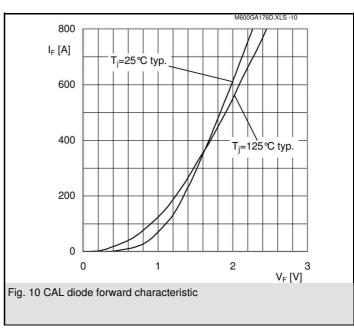


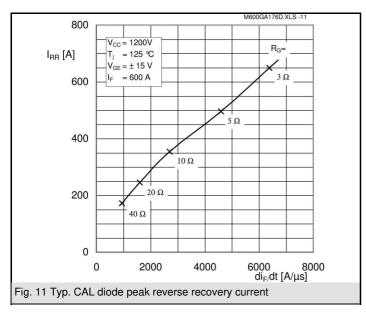


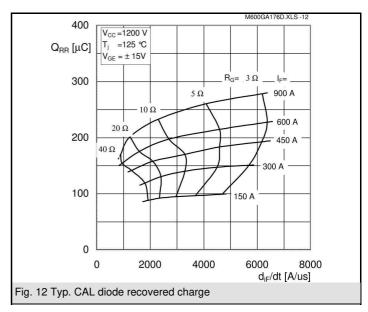


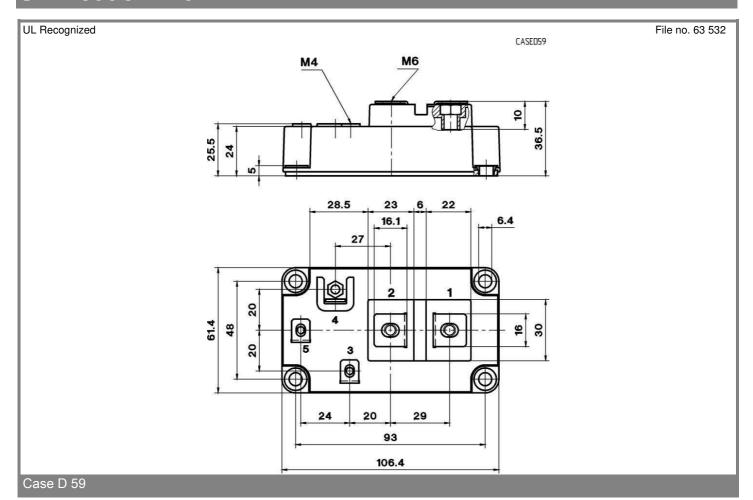


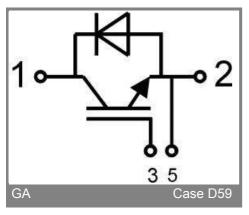












5 28-06-2010 GIL © by SEMIKRON