Application Note AN 14-004

Revision: 02

T.-. b..... al. . ab.

Issue date: 2024-08-02

Prepared by: Dr. Arendt Wintrich

Approved by: Peter Beckedahl

Keyword: Thermal resistance, Measurement, Datasheet, IGBT-Module

Thermal Resistance of IGBT Modules - Specification and Modelling

1. Introduction	
2. Methods for Determining Thermal Resistances	5
2.1 Definitions with regards to this application note	
2.2 Chip T_j , case T_c and heatsink temperature T_s measurement	
2.3 Specification of thermal resistance	
2.4 Multi chip devices	4
2.5 Thermal coupling between switches	
2.5.1 R _{th(j-c)}	6
2.5.2 R _{th(j-s)}	
2.5.3 R _{th(c-s)} with thermal coupling of switches	
2.5.4 R _{th(c-s)} without thermal coupling	
2.5.5 $R_{th(c-s)}$ per switch as a function of chip size	
3. Modelling with Thermal Equivalent Circuits	10
4. Change of Data Sheet Specification of R _{th} Values from 2015 Onwards	11
4.1 Heatsink rated module	12
4.2 Case rated modules	12
5. Conclusions	12

1. Introduction

For selecting a suitable IGBT module it is essential to know its thermal performance in conjunction to the thermal properties of the cooling system and the requirements given by the application (power, ambient temperatures, load cycle stress/required lifetime).

Main issues for the comparability of thermal characteristics of different modules are:

- Different module packaging technologies (with/without baseplate, with integrated heatsink),
- manufacturer specific, different choices of reference points for measuring temperatures,
- differences in specification thermal resistances (measuring conditions, specification per module or per switch, with or without thermal coupling between module's switches, modelling),
- thermal conductivity and thickness of TIM (thermal interface material) between module and heatsink, This application note describes usual specification methods for thermal characteristics of IGBT modules and its impacts on data sheet parameters. It outlines the actual and future methods of R_{th} specification of Semikron Danfoss components. A detailed overview of the physical principles of heat transfer and its usage to improve power electronic systems is given in the Application Manual of Semikron Danfoss [2].

R_{th} and temperature measurement results presented here are exemplary to show different effects. They may deviate from datasheet values which are valid to describe the product.

2. Methods for Determining Thermal Resistances

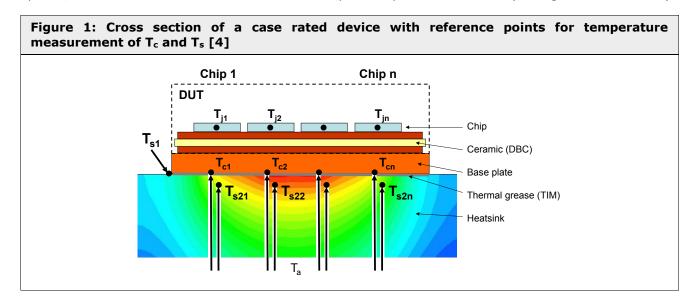
2.1 Definitions with regards to this application note

IGBT module: contains one or more power electronic switches, isolated from the cooling surface called "case" with the assumption that the total heat is dissipated via this surface;

Switch: electrical circuit element, here the IGBT with its antiparallel diode;

IGBT-switch: IGBT part of the switch made of one or by parallel connection of more chips inside of a module operating as one functional circuit element;

Diode-switch: Diode part of the switch made of one or by parallel connection of more chips inside of a module operating as one functional circuit element;


Case rated module: module where the rated current is specified for a certain case temperature, which requires the specification of a thermal resistance from IGBT-switch and diode-switch to the case, normally modules with a thick baseplate;

Heatsink rated module: module where the rated current is specified for a certain heatsink temperature, which requires the specification of a thermal resistance from IGBT-switch and diode-switch to the heatsink and the mounting conditions for which this resistance is valid, normally modules without baseplate;

2.2 Chip T_i, case T_c and heatsink temperature T_s measurement

There are different possibilities to measure the temperatures of IGBT and diode chip, for example using infrared cameras or thermocouples at chip surfaces or using temperature dependence of semiconductor properties like the forward voltage drop. Latter is proposed by IEC 60747 standard [3] and used in the following (called " $V_0(T)$ -method") because this method is applicable without special prepared modules for its user: When operating with a small measurement current, bipolar semiconductors show a linear dependency between the forward voltage drop and the chip temperature. A calibration curve $V_{ce}=f(T_j)$ or $V_f=f(T_j)$ is generated using this effect by passive heating and measuring the forward voltage at the measurement current and different temperatures. Then the switch X (IGBT or diode) is operated at a DC load current to heat it until thermal equilibrium is reached. The power dissipation is calculated by $P_X=V_X*I_{DC}$. After switching off the load current the small measurement current is applied again to the switch. T_j can be derived from the measured voltage drop by the calibration curve a few 100 μ s after turning off. The short brake is necessary to allow semiconductor charge carrier effects to decline. The result is an area related average junction temperature of that switch referred here as T_i .

Case temperature measurement for case rated modules is made by thermocouples from underneath in the center position of the chips. For heatsink temperature measurements the IEC 60747-15 [4] leaves two options, beside the module T_{s1} or from below the chip center position T_{s2} as well (see Figure 1 and Table 1).

To measure T_{cn} and T_{s2n} at the same vertical position underneath the chips different options can be used:

- either two heatsinks where one has the holes drilled through underneath the chips to measure T_{cn} and a second heatsink with blind wholes at the same positions to measure T_{s2n}
- or in case of symmetrical chip position of the switches one heatsink with the half number of holes to measure $T_{c1\dots n/2}$ and the other half to measure $T_{s2n/2\dots n}$. After the first measurement the device is turned by 180° and in a second measurement the other temperatures are measured

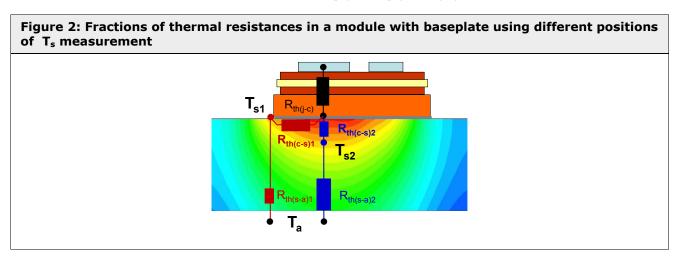
or a slightly shifted drill hole for T_{s} measurement beside of T_{c} measurement

The first two have the disadvantage of disassembly and remounting of the module, which is a source for error where the third has a low error by a deviation from the chip center position. In heatsink rated modules without baseplate it is not possible to measure the case temperature without disturbing the heat flow from chip to heatsink. Here only the heatsink temperature is measured either from below T_{s2n} or beside T_{s1} of the module.

Table 1: Definition of temperature reference points according to IEC 60747-XX [3][4]			
Measured temperature Symbol Temperature reference point			
junction temperature of chip 1 to n	T _{j1n}	determined for the chips of measured switch, usually by means of methods as described in the individual documents (diode -2; IGBT -9)	
case temperature below chip 1 to n	T _{c1n}	at manufacturer specified point of case, measured from underneath through a 12.5 mm small hole through the heatsink and any thermal interface material underneath the chip	
heatsink temperature at a specified surface point	T _{s1}	$\begin{tabular}{ll} \textbf{method 1:} T_s is taken at the heatsink surface from above at hottest accessible point nearest to the chip \\ \end{tabular}$	
heatsink temperature below chip 1 to n	T _{s212n}	method 2: T_s is taken from underneath through a 12.5 mm blind hole ending at 2 \pm 1 mm below the heatsink surface	

Specification of thermal resistance

The formulas to calculate the thermal resistances $R_{th(j-c)}$, $R_{th(c-s)}$ or $R_{th(j-s)}$ per switch or per module M by using the temperature differences and power dissipation derived by the measurements from above is shown in Table 2. The variable X stands for IGBT or diode and is applicable to any other power semiconductor inside a module. The highlighted formulas have been used by Semikron up to 2014.


Table 2: Definition of R _{th(j-s)} , R _{th(j-c)} and R _{th(c-s)} according to IEC 60747-15* [4]				
Thermal resistance R _{th}	case rated modules	heatsink rated modules		
per IGBT- or diode switch for modules with single chip switches	$R_{th(j-c)} = \frac{T_j - T_c}{P}$ $R_{th(c-s)1} = \frac{T_c - T_{s1}}{P}$ \mathbf{Or} $R_{th(c-s)2} = \frac{T_c - T_{s2}}{P}$	$R_{th(j-s)1} = rac{T_j - T_{s1}}{P}$ or $R_{th(j-s)2} = rac{T_j - T_{s2}}{P}$		
per IGBT- or diode switch of modules using n chips in parallel	$R_{th(j-c)} = \frac{T_j - \sum_{i=1}^n {^Tc_i}/n}{P}$ $R_{th(c-s)1} = \frac{\sum_{i=1}^n {^Tc_i}/n - T_{s1}}{P}$ $R_{th(c-s)2} = \frac{\sum_{i=1}^n {^Tc_i}/n - \sum_{i=1}^n {^Ts_2i}/n}{P}$	$R_{th(j-s)1} = \frac{T_j - T_{s1}}{P}$ \mathbf{Or} $R_{th(j-s)2} = \frac{T_j - \sum_{i=1}^n T_{s2i}/n}{P}$		
per module M (losses $P_M = \Sigma P_m$) with n chips	$R_{th(c-s)M1} = \frac{\sum_{i=1}^{n} {^{T}ci}/_{n} - T_{s1}}{P_{M}}$ or $\sum_{i=1}^{n} {^{T}ci}/_{n} - \sum_{i=1}^{n} {^{T}ci}/_{n}$	n.a		
	$R_{th(c-s)M2} = \frac{\sum_{i=1}^{n} {^{1}ci}/n - \sum_{i=1}^{n} {^{1}s2i}/n}{P_{M}}$			

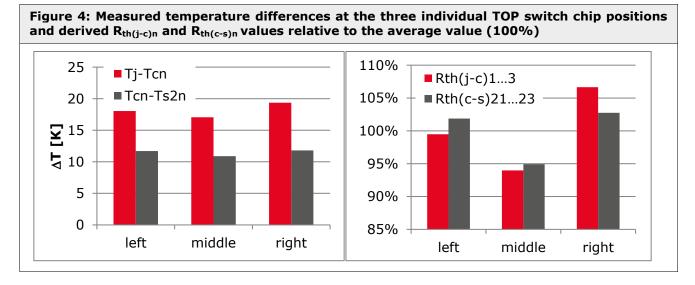
* Note: the IEC does not clearly distinguish between single chip and multiple chip switches and how to deal with different case or heatsink temperatures at different chip positions of one switch. Amendatory to the international standard is the average of the measured temperatures used here (see 2.4).

The standard leaves to the module manufacturer the choice of reference point location for heatsink temperature T_s , but the location should be specified in the data sheet or in technical explanations. This free choice leads to a variety of heatsink related R_{th} values depending on manufacturer and for different products and makes a comparison difficult.

The reasons for these difficulties are different portions of thermal resistances in the heat path from junction to ambient, see Figure 2. Reference point T_{s1} at heatsink surface is much cooler than T_{s2} underneath the module with the consequences described in Table 3. The better the heatsink dissipates the power the larger the difference of measuring results. Related to fixed T_a , thermal properties and measuring conditions, $R_{th(s-a)}$ varies with the selection of reference point T_{s} , but $R_{th(j-a)} = R_{th(j-c)} + R_{th(c-a)}$ will remain constant.

Table 3: Eff	Table 3: Effects of reference point for T_s at $R_{th(c-s)}$ and $R_{th(s-a)}$					
Measuring method for T _s	Referen ce Point	$\begin{array}{c} \textbf{Relation} \\ \Delta \textbf{T}_{\text{(c-s)}}, \\ \textbf{R}_{\text{th(c-s)}} \end{array}$	Relation $\Delta T_{(s-a)}$, $R_{th(s-a)}$	Advantage	Disadvantage	used by Semikron Danfoss
method 1	T _{s1}	higher	Lower	accessible Measuring point, one measurement	strong heatsink depending	for case rated modules with release date before 2014
method 2	T _{s2n}	lower	Higher	less heatsink depending,	special prepared heatsink, two measurements	for heatsink rated modules; for case rated modules from 2015 onwards

2.4 Multi chip devices


All switches of IGBT modules for high power applications are made of multiple IGBT/diode chips in parallel. The chips are soldered or sintered to isolating substrates, in most cases DBC substrate (Direct Bonded Copper). Due to electrical and mechanical unbalances each chip has different power dissipation and its own individual temperature. The IEC standard leaves also here some determinations to the module manufacturers, such as which combinations of case and heat sink temperature reference points should be used for datasheet specification, e. g. case temperatures underneath the hottest chip or medium values of all chip-specific case temperatures. Datasheets and technical explanations often do not contain information on whether the specified thermal properties were calculated from peak or mean values of chip-individual case temperatures. Using the $V_0(T)$ junction temperature measurement method, the voltage drop of all parallel IGBT or diode chips of a switch is measured. That means the derived T_j is an area related average temperature including thermal coupling effects of the parallel chips of that IGBT- or Diode-switch. So, the measurement result is not exactly the temperature equivalent voltage of one single specific or the hottest chip.

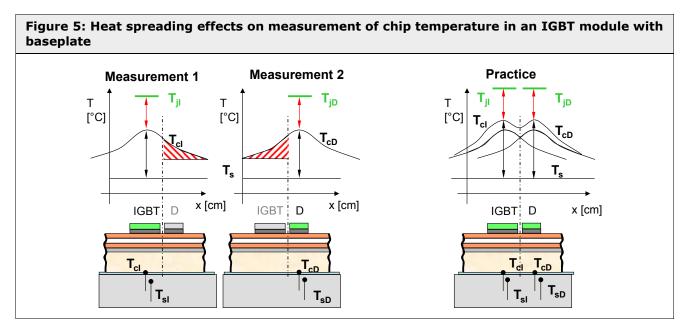
In contradiction to this the baseplate measurement provides a position-related case temperature T_{cn} . For determination of a switch-related case temperature it is necessary to measure T_{cn} under each chip and use the average T_c together with T_j to calculate the $R_{th(j-c)}$ per switch. Otherwise, the thermal resistance will be position dependent and **the position underneath the hottest chip provides the smallest thermal resistance R_{th(j-c)}**. An example for SEMiX 3s is shown in Figure 3, a deviation in the temperature difference between the single positions 1 to 3 of 10% ...15% is common. The same applies to the sink temperatures and the determined $R_{th(c-s)21...23}$. Here as well the averages of all temperatures must be used.

Figure 3: View into a SEMiX 3s module with 2 IGBT- and diode-switches, each made of 3 parallel chips and a temperature profile at module baseplate when heated by IGBT losses

To profile

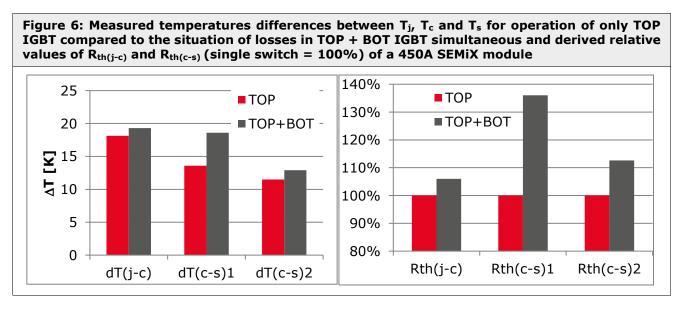
In heatsink rated modules without baseplate temperature gradients are on the heatsink even higher due to the lack of the baseplate's heat spreading effect. Here as well the position underneath the hottest chip would provide the smallest $R_{th(j-s)}$. Therefore, the mean values of heatsink temperatures beneath all parallel chips should be used for determination of a switch-related heatsink temperature.

As depicted above is it necessary to measure case and/or heatsink temperature underneath each chip and use average values per switch for case and heatsink temperature. For this reason Semikron Danfoss uses module type specific liquid cooled heatsink with holes at each chip position.


2.5 Thermal coupling between switches

To which extend thermal coupling takes place depends on the distance between the chips of the switches and thickness + thermal conductivity of the layers underneath. In fully equipped modules with distances between the switches of less than 3 mm thermal coupling has to be considered in the DBC. But mostly the heat spreading generates effects of thermal coupling in the thermally more conductive layers underneath the DBC (base plate, heatsink root).

When using the above-described measuring method with DC current, losses can be only impressed in either IGBTs or diodes. Thermal coupling between IGBT and diode of one switch will not be detected but will heat



up the devices to higher temperatures in the application. The hatched area (see Figure 5 left) from the single measurement cannot longer be used for the heat transfer if both devices dissipate power leading to a higher temperature profile to the same extend (right).

2.5.1 R_{th(j-c)}

The effect of operating two IGBT switches simultaneously is shown in Figure 6. This effect can be investigated easily with the $V_0(T)$ -measurement method, if the switches of the same kind are connected electrically in series, for example the two IGBT or two diodes of a half-bridge module. In case of SEMiX the TOP and BOT IGBT-switches are arranged only with a few millimeters distance (see Figure 3) and heating up each other. The measurement result shows that $R_{th(j-c)}$ changes only a few single percent. This can be explained with a low cross conducting within the DBC. The temperature of the copper base plate is increased by the same value as the chip temperature, when two switches are in operation instead of one. The ΔT and therewith the R_{th} stays constant. The specification of $R_{th(j-c)}$ per single IGBT- or diode-switch without considering coupling effect is acceptable.

2.5.2 R_{th(j-s)}

The resistance is normally specified for modules without baseplate. Here only a very limited thermal coupling occurs between the switches inside the DBC. The value is specified for a single IGBT- or diode-switch for a

sink temperature measured underneath the module. There is no adaptation of the measurement procedure or specifications necessary to consider thermal coupling effects inside the module during inverter operation.

2.5.3 $R_{th(c-s)}$ with thermal coupling of switches

In Figure 6 can be seen that $R_{th(c-s)I}$ changes from 15% (two IGBT-switches in operation and T_s measured underneath the module) up 35% if T_s is measured beside the module. The results below show that it can rise up to 100% if the diode-switches dissipate power as well. Specifying only a $R_{th(c-s)X}$ per switch without any coupling factor will lead to a too low temperature prediction in case of losses in all switches. Table 4 shows the conditions for simulation and measurement of thermal coupling effects on $R_{th(c-s)}$ of a SEMIX 3s and SEMITRANS 3 half bridge module.

Table 4: Specification of working points for simulation and measurement of thermal coupling
influence on the R _{th(c-s)} ; 100% stands for about 1 W/mm ² chip area in operation

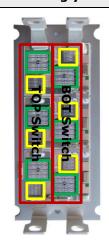
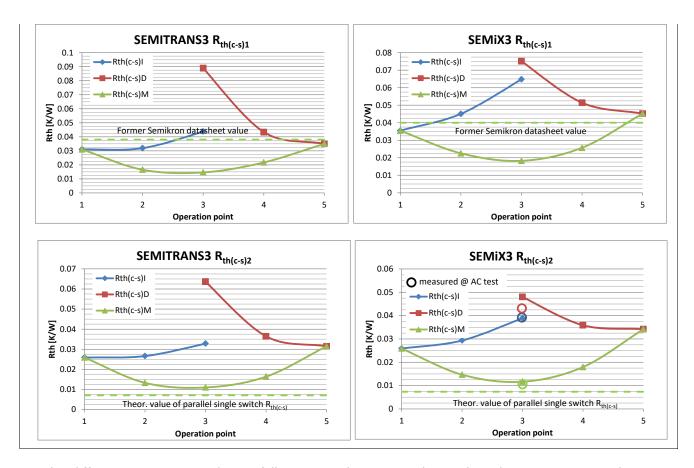
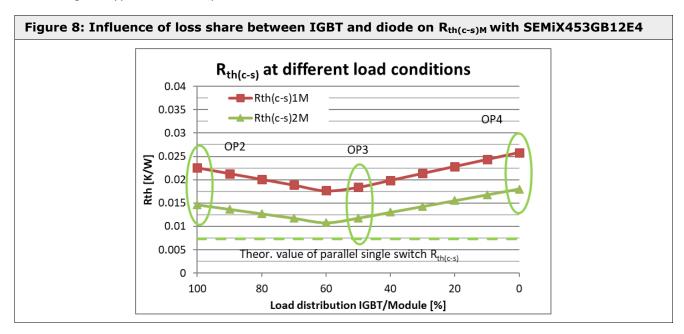

#	Practical relevance	Power losses per IGBT and diode			
		I TOP	І ВОТ	D BOT	D TOP
1	Half bridge module in brake chopper or stall mode of a motor inverter	100%	0	0	0
2	Inverter operating with max. AC voltage, power factor $cos(\phi)=1$, low switching frequency	100%	100%	0	0
3	Inverter operation with lower output voltage, power factor $\cos(\phi)$ =-0.8+0.8, high switching frequency	50%	50%	50%	50%
4	Inverter operating with max. AC voltage, power factor $cos(\phi)=-1$, low switching frequency	0	0	100%	100%
5	Booster with input voltage almost equal to output voltage	0	0	0	100%

Figure 7 shows the calculated variation of $R_{th(c-s)I}$ per IGBT-switch, $R_{th(c-s)D}$ per diode-switch and $R_{th(c-s)M}$ per module. To calculate $R_{th(c-s)M}$ the highest temperature difference $dT_{(c-s)X}$ determined for one switch was divided by the total losses of the module. Operation points 1, 2 and 3, 4 are equal to results of measured values and used to validate the model. Operation point 3 represents a condition with losses in IGBT and diode at the same time. It was verified for the SEMiX by an AC test with alternating current through IGBT and diode at a 50 Hz high current power supply.


Figure 7: Thermal resistances $R_{th(c-s)}$ of 450A-SEMITRANS 3 (left) and 450A-SEMiX 3s (right) for different situations of thermal coupling between switches accordingly Table 4

Diode IGBT


For the different operation conditions following conclusions can be made, taking into account that R_{th} is inversely proportional to the area A used for heat transfer ($R_{th} \sim 1/A$):

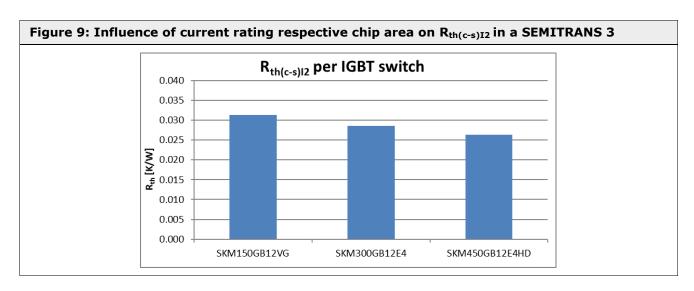
- The module has the highest $R_{th(c-s)M}$ if only one IGBT- or diode-switch dissipates power **(OP1 and OP5)** because only a small part of the modules mounting surface is used for heat transfer. $R_{th(c-s)X} = R_{th(c-s)M}$ because only one heat source is inside the module. This worst case condition corresponds roughly to the SEMIKRON datasheet statement for product release before 2014. Using this value for T_j calculation gives a good agreement between calculation and reality for OP1 and OP5 but overestimates the $dT_{(c-s)}$ for OP2...4.
- The R_{th(c-s)M} decrease if two IGBT-switches or two diode-switches (**OP2 and OP4**) dissipate power, because the two switches use a larger case area to transfer heat. How much it will decrease depends on the distance between the switches, for example the two IGBT-switches inside the SEMITRANS 3 are far away and not thermally coupled. In that case the heat transfer area is doubled, therefore is R_{th(c-s)M} reduced here to 50%. R_{th(c-s)I} is constant, independent if one or two switches are used. The coupling inside the SEMIX 3s is stronger, the R_{th(c-s)M} is reduced only to 60% when two switches are used and the R_{th(c-s)I} is increased by 15...30% because TOP and BOT IGBT are close to each other and share a fraction of the same area for heat transfer which they could use before for its own.
- The modules $R_{th(c-s)M}$ has its lowest value if all switches are in operation **(OP3)** because the largest area of the modules mounting surface is used for heat transfer. The $R_{th(c-s)M}$ value of measuring method 1 (T_s measured beside the module) is 30% lager for SEMITRANS 3 and 50% larger for SEMIX 3s than those of method 2 (T_s measured below chip center). The individual $R_{th(c-s)X}$ increase much more at OP3 compared to OP2. The highest effect can be seen at the antiparallel diode inside the SEMITRANS 3 because it is heated by the nearby IGBT.
- A specification of R_{th(c-s)X} per single IGBT- and diode-switch alone is not sufficient to describe thermal
 conditions for a power module. A description of coupling effects either per switch or per module is
 mandatory.

The $R_{th(c-s)}$ depends furthermore on the distribution of power dissipation between the switches inside a module. OP3 represents a condition with similar losses per mm² used chip area. But depending on power factor,

modulation ration or switching frequency of an inverter this loss share can vary between 80% IGBT losses (20% diode losses) and 40% IGBT losses (60% diode losses) under practical relevant conditions. Figure 8 shows this effect. The lowest value is reached where IGBT and diode have similar junction temperatures, which is in the example at 60% of the module losses in the IGBT and 40% in the diodes. By using the R_{th(c-s)M} derived from OP3 it is possible to describe the temperature difference "case-to-sink" for the whole range of typical inverter operation conditions with a failure of less than 10%.

R_{th(c-s)} without thermal coupling

If R_{th(c-s)} is specified separately for each single IGBT- and Diode-switch, thermal coupling between switches is neglected. A theoretical $R_{th(c-s)M}$ per module is calculated by some manufacturer by a virtual parallel connection of all $R_{th(c-s)}$ of the module.


$$R_{th(c-s)M} = \left(\frac{n}{R_{th(c-s)I}} + \frac{n}{R_{th(c-s)D}}\right)^{-1} \mid with \ n = number \ of \ switches \ per \ module$$

This theoretical value could be reached only if the distance between all switches is wider than 3...4 times the thickness of the material stack "chip-to-sink" (15...20 mm), but this is never the case in today's available power modules. This theoretical value can therefore never be reached (see dashed line in Figure 7 and Figure 8).

2.5.5 R_{th(c-s)} per switch as a function of chip size

In the past Semikron Danfoss has specified the $R_{th(c-s)M1}$ for a module family of the same size, independent from the current rating of the module. A more detailed system design considering different operation conditions requires a specification of $R_{th(c-s)X2}$ per switch. And this value depends also on the chip area used inside a module. The thermal resistances values for IGBT-switches of SEMITRANS 3 modules with current ratings from 150A to 450A are shown below as an example.

2.6 Effects of Mounting Conditions on $R_{th(j-s)}$ and $R_{th(c-s)}$

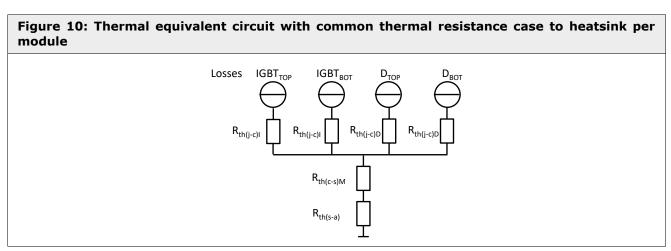
These thermal resistances depend on module assembly, e.g. screw tightening torque, heatsink performance and quality, thickness and heat conductivity of TIM. For specification of IGBT modules with baseplate the manufacturer uses not only different reference points but also different assumptions on thermal conductivity of TIM and quite different possibilities for specifying $R_{th(c-s)}$ with or without respect to thermal coupling of switches inside modules, see Table 5.

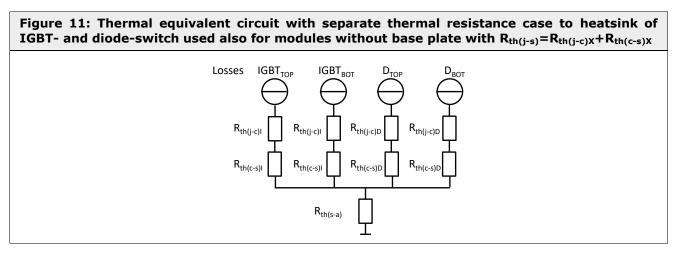
Table 5: R _{th(c-s)} specifications from IGBT modules manufacturer's datasheets				
Manufacturer	TIM thermal conductivity λ	Specification of R _{th(c-s)} per IGBT/Diode	Specification of R _{th(c-s)} per module	Including thermal coupling of switches
Semikron Danfoss	0.81 and/or 2.5 W/(m*K);	х	х	Yes
Infineon	1.0 W/(m*K)	x		No
ABB Semiconductors	1.0 W/(m*K)	х		No
Mitsubishi	0.9 / 1.0 W/(m*K)		х	Yes
Fuji	no information		х	Yes

The $R_{th(j-s)}$ and $R_{th(c-s)}$ data sheet statement of Semikron Danfoss IGBT modules are valid only if the modules are mounted according to the mounting instructions using the specified thermal grease material and layer thickness. The power module should be stored a few days or a few temperature cycles should be done to reach a good distribution of the thermal grease. The values are measured at liquid cooled heatsinks, at less effective air cooled heatsinks the $R_{th(c-s)M}$ is lower due to a wider heat spreading inside the module.

3. Modelling with Thermal Equivalent Circuits

For modules without baseplate an individual $R_{th(j-s)X}$ per IGBT- or diode-switch is specified. This kind of modelling is approved and does not need to be changed. The thermal coupling inside the module is low and is modeled inside the heatsink.


The two today's commonly used ways of modelling of modules with base plate are


- a) a switch specific value $R_{th(j-c)X}$ + common $R_{th(c-s)M}$ for the complete module (see Figure 10) or
- b) switch specific values of $R_{th(i-c)X}$ and $R_{th(c-s)X}$ (see Figure 11).

Both methods have advantages and disadvantages and are only valid for certain operation conditions. Three-dimensional structures are mapped to one-dimensional models. This will inevitably result in errors in temperature calculation. Methods like Finite Element simulations are preferred for more accurate results. Model a) includes thermal coupling between all switches where b) neglects fully the thermal coupling.

If for example a common $R_{th(c-s)M}$ is used and the losses are well distributed between the chips, the model can show a good agreement to the temperature conditions inside a module. In case of very asymmetric load with losses only in one switch the model would show to low temperatures for a realistic value of $R_{th(c-s)M}$. To minimize this risk Semikron Danfoss has specified in the past a maximum value of $R_{th(c-s)M1}$ for the module, which was almost the value of a single switch. It would have been more accurate to use a value for a single switch $R_{th(c-s)X}$ in that case. On the other hand a single switch $R_{th(c-s)X}$ does not reflect the effect of thermal coupling and results in a too low calculated junction temperature if the other switches have losses as well. This can become critical with regards to the maximum junction temperature but will also result in a lower temperature swing with pulsed load or mission profiles. A lower temperature swing leads to higher calculated numbers of power cycles and lifetime than it will be reached in reality in inverter applications.

To make the systems more and more cost-effective designer needs to decide by themselves where to put safety margin in. This requires a case sensitive modeling with an adaptation of parameters on different operation condition. Following this requirement Semikron Danfoss specifies its IGBT modules in a different way for new products released starting from 2015. A switch specific values of Rth(i-c)X and Rth(c-s)X is specified per IGBT- or diode-switch, which can be used for single switch operation of modules. Additional an Rth(c-s)M2 including full thermal coupling is specified which can be used for inverter operation with a distribution of losses between all switches inside the module. For the purpose of comparison with competitor datasheets the theoretical value is specified as well.

4. Change of Data Sheet Specification of Rth Values from 2015 Onwards

Product group related information about the position of reference points of actual Semikron Danfoss IGBT modules is included in the specific Technical Explanations 0...[9]. The position of T_s is different between heatsink rated modules without baseplate (method 2, T_{s2}) and case rated modules with baseplate (applied method 1, T_{s1} : at the heatsink surface beside the module at its longitudinal side, nearly 1/3 of the module length away from the module corner).

For multiple chip switches the average values of $T_{\rm j}$, $T_{\rm cn}$ and $T_{\rm s2n}$ of that switch is used for $R_{\rm th}$ calculation.

4.1 Heatsink rated module

Sink temperature measurement point underneath the switch position does not change. The modules are 3 times temperature cycled between 10°C and 80°C before Rth measurement to guaranty a good distribution of thermal grease. The forward voltage drop to calculate power dissipation is measured as close as possible to the chips at the main terminals. $R_{th(j-s)}$ values are given for single switch operation.

Until 2014: All switches in a small number of modules are measured; the highest value is given as typical value with some safety margin

After 2015: all switches of a module are measured; the switch with the highest R_{th(j-s)} is determined and measured in a larger number of modules. The average $R_{th(i-s)}$ of that worst case switch is given as a typical value in the data sheet.

Case rated modules

The R_{th(j-c)} measurement does not change; the value is derived from a single switch measurement with power dissipation measured at the main terminals. For modules with more than one switches of the same kind (e.g. 2 IGBT-switches of a half bridge) the switch with the highest R_{th(i-c)} is specified in the data sheet and given as a maximum value on the basis of a larger number of measurements.

Until 2014: R_{th(c-s)M} on module basis was given for method 1 (beside of the module) for a worst case of a very asymmetric distribution of power dissipation between the switches;

After 2015: R_{th(c-s)} is given for method 2 (underneath the module) for a single switch R_{th(c-s)X} and additional for the module R_{th(c-s)M} including the effect of thermal coupling between the switches for a typical distribution of power dissipation between the switches. For comparison to competitor products also the theoretical value is given.

The new description of the modules thermal properties offers the user three main advantages:

- The reference point for T_s measurement underneath the module depends less on the cooling conditions like cooling medium (air, liquid) heatsink design and heatsink material than the formerly used position beside the module.
- Semikron Danfoss uses the same reference point T_s for case rated and heatsink rated modules which makes a comparison easier between the different product lines.
- Using the reference point for T_s underneath the module is the common way of R_{th(c-s)} specification for the most modules on the market. That makes a comparison between modules of different manufacturers easier. As an additional service R_{th(c-s)M} is given including full thermal coupling between the switches inside the module.
- The datasheet specification of $R_{th(c-s)}$ per IGBT- and diode-switch and also for the module allows distinguishing between different operation conditions and using the most appropriate model.

It is necessary that the user applies the heatsink properties which are valid for the new reference point of T_s measurement. For those modules described in the new way (indicated in the conditions of datasheet characteristic $R_{th(c-s)}$ with the note "Ts from underneath") the heatsink $R_{th(s-a)}$ has to be specified for a measurement point under the module as well (see 2.3).

5. Conclusions

For reliable operation a proper thermal design is crucial. An IGBT module comparison just by datasheet information could be misleading when comparing products from different manufacturers without careful consideration. Wrong conclusions can easily be drawn concerning power dissipation and junction temperatures which may only be related to different methods of measurement. Only by using identical reference points T_c and T_s, identical measuring conditions and methods, ranking and selection of suitable power modules will be correct. Since also other parameters such as cooling conditions, use of thermal interface material etc. vary for different manufactures, it is recommended and necessary to validate the thermal performance of the application by measurements.

Figure 1: Cross section of a case rated device with reference points for temperature measurement of T_c a T_s [4]	ind 2
Figure 2: Fractions of thermal resistances in a module with baseplate using different positions of T_s measurement	4
Figure 3: View into a SEMiX 3s module with 2 IGBT- and diode-switches, each made of 3 parallel chips ar a temperature profile at module baseplate when heated by IGBT losses	5 5
Figure 5: Heat spreading effects on measurement of chip temperature in an IGBT module with baseplate Figure 6: Measured temperatures differences between T_j , T_c and T_s for operation of only TOP IGBT compared to the situation of losses in TOP + BOT IGBT simultaneous and derived relative values of $R_{th(j-c)}$	
and $R_{th(c-s)}$ (single switch = 100%) of a 450A SEMIX module	6
situations of thermal coupling between switches accordingly Table 4	9
Figure 9: Influence of current rating respective chip area on $R_{th(c-s)I2}$ in a SEMITRANS 3	11
switch used also for modules without base plate with $R_{th(j-c)X} + R_{th(c-s)X}$ + $R_{th(c-s)X}$	
Table 1: Definition of temperature reference points according to IEC 60747-XX [3][4]	
Table 2: Definition of $R_{th(j-s)}$, $R_{th(j-c)}$ and $R_{th(c-s)}$ according to IEC 60747-15* [4]	4
Table 4: Specification of working points for simulation and measurement of thermal coupling influence on the R _{th(c-s)} ; 100% stands for about 1 W/mm² chip area in operation	
Table 5: Physical energifications from IGRT modules manufacturer's datasheets	10

Symbols and Terms

Letter Symbol	Term
D	Diode (also as subscript)
I _C , I _F	Collector current of IGBT, forward current of diode
М	Module (as subscript)
P, P _x	Power losses (general), power losses of a switch x
$R_{th(c-a)}$	Thermal resistance between baseplate and cooling media
$R_{th(c-s)x}$	Thermal resistance between baseplate and heatsink per IGBT- or diode-switch
$R_{th(c-s)M}$	Thermal resistance between baseplate and heatsink specified for a module
$R_{th(j-a)}$	Thermal resistance between chip and cooling media
$R_{th(j-c)x}$	Thermal resistance between chip and baseplate per IGBT- or diode-switch
R _{th(s-a)}	Thermal resistance between heatsink and cooling media
Ta	Temperature of cooling media
T _c	Baseplate temperature
T _{cD1n} , T _{cI1n}	Baseplate temperature underneath diode/IGBT chips 1n
T _j	Average value of chip temperature
T _s , T _{s1} , T _{s2}	Heatsink temperature, 1- beside the module, 2- underneath a chip position
V _{CEsat} , V _F	Collector-emitter saturation voltage drop of IGBT, forward voltage drop of diode
λ	thermal conductivity of TIM between baseplate or DBC of modules without baseplate and heatsink

A detailed explanation of the terms and symbols can be found in the "Application Manual Power Semiconductors" [2].

References

- [1] www.semikron-danfoss.com
- [2] A. Wintrich, U. Nicolai, W. Tursky, T. Reimann, "Application Manual Power Semiconductors", 2nd edition, ISLE Verlag 2015, ISBN 978-3-938843-83-3
- [3] IEC Standard 60747-9 "Semiconductor Devices" Discrete Devices, Part 9: Insulated-gate bipolar transistors (IGBTs)
- [4] IEC Standard 60747-15 "Semiconductor Devices" Discrete Devices, Part 15: Isolated power semiconductor devices

 SEMiX® IGBT Modules & Bridge Rectifier Family. Technical Explanations Version 3.0, October 2009. www.semikron-danfoss.com
- [5] SEMITOP® Technical Information, Version 2, January 2008. www.semikron-danfoss.com
- [6] MiniSKiiP® Generation II Technical Explanations, Vers. 3.3, August 2012. www.semikron-danfoss.com
- [7] SKiM® IGBT Modules Technical Explanations, Version 1.5, July 2011. www.semikron-danfoss.com
- [8] SKiiP® Technical Explanations. www.semikron-danfoss.com
- [9] Technical Explanations SKiiP[®]4. Rev. 2.0, July 2012. www.semikron-danfoss.com

IMPORTANT INFORMATION AND WARNINGS

The information provided in this document may not be considered as any guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). This document describes only the usual characteristics of Semikron Danfoss products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Resulting from this, application adjustments of any kind may be necessary. Any user of Semikron Danfoss products is responsible for the safety of their applications embedding Semikron Danfoss products and must take adequate safety measures to prevent the applications from causing any physical injury, fire or other problem, also if any Semikron Danfoss product becomes faulty. Any user is responsible for making sure that the application design and realization are compliant with all laws, regulations, norms and standards applicable to the scope of application. Unless otherwise explicitly approved by Semikron Danfoss in a written document signed by authorized representatives of Semikron Danfoss, Semikron Danfoss products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Semikron Danfoss does not convey any license under its or a third party's patent rights, copyrights, trade secrets or other intellectual property rights, neither does it make any representation or warranty of non-infringement of intellectual property rights of any third party which may arise from a user's applications. This document supersedes and replaces all previous Semikron Danfoss information of comparable content and scope. Semikron Danfoss may update and/or revise this document at any time.

Semikron Danfoss International GmbH Sigmundstrasse 200, 90431 Nuremberg, Germany Tel: +49 911 65596663 sales@semikron-danfoss.com, www.semikron-danfoss.com