
ENGINEERING TOMORROW

Design guide

DATA COMMUNICATION MODBUS RS 485 RTUFor product type - EKD / EIM controllers

This User guide document provides general information on the setup of Modbus RS-485 networks and explains how to configure the communication between EKD/EIM and a system controller, using the Modbus RTU.

Features

- · Simplicity
- Standard Ethernet
- Open protocol
- Availability on many devices

Part 1 - Hardware network specification

References Definitions and abbreviations Wiring RS-485 specific Repeater Topology Cable connections Termination Conductors in a daisy chain	3 3 4 5 5 6 7 8 8
Part 2 - Software specification and configuration	
Modbus RTU message. Modbus RTU message structure How to access parameters RS485 bus function codes overview	9 10 10 11 11 11 14
Appendix 2 EKD Modbus table	16 17 18

Introduction Making a network means to connect devices together with a communication bus. But to make

reliable and high performance networks strict rules must be followed.

References Modbus specifications, Modbus.org

EIA-485 RS-485 fieldbus specification

Definitions and abbreviations

RTU Remote Terminal Unit

SW Software **HW** Hardware

AWG American Wire Gauge
EKE / EIM / EKD Superheat Controller/driver

Parameter The parameter number indicates the number of a given parameter.

Value Indicates the factory settings.

Type Group. Group (number) indicates the group the relevant parameter

belongs to. The group number is only of importance for presentation

in AKM PC software.

PNU Short for Parameter NUmber. In Modbus terminology it corresponds to the

register number which is also often referred to as the offset. The PNU numbers can have values in the range from 1 to 65535. The corresponding Modbus address is found by subtracting 1 from the PNU number. For instance PNU

number 117 would correspond to Modbus address 116."

Wiring

Wiring characteristics

The wires should have the following characteristics:

- Characteristic impedance: 120 Ohm +/- 10%;
- Specific resistance depending on network length.
- Cable must be with Screen if the bus cable exceeds 3m.
- The cable is connected from controller to controller and no branches are allowed on the cable
- Each shield must be grounded at one side only.

Wiring types

Two types of wires can be used based on required ruggedness:

- 1. Twisted pair with ground: short leads, no power lines in proximity.
- 2. Twisted pair + ground and shield: long leads, disturbed environment.

Recommendations (Source Modbus.org)

When choosing a transmission line for RS-485, it is necessary to examine the required distance of the cable and the data rate of the system.

An RS485-Modbus must use a balanced pair (for D+-D-) and a third wire (for the Common/Gnd). For RS485-Modbus, Wire Gauge must be chosen sufficiently wide to permit the maximum length (1000 m). AWG 22 is always sufficient for the Modbus Data.

Category 5 cables may operate for RS485-Modbus, to a maximum length of 600m.

For the balanced pairs used in an RS485-system, a Characteristic Impedance with a value higher than 100 Ohms may be preferred, especially for 19200 and higher baud rates.

Use one twisted pair of conductors for connecting the differential signals and use another conductor (for example a second twisted pair) for connecting the ground.

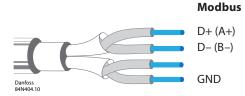


Fig. 1 Connection example

Modbus connections

EKE	EKD	EIM
D+	A+	TxD+
D-	B-	TxD-
Gnd	Gnd	1)

1) Gnd has been omitted from EIM.

Connection of a twisted cable in a 2-wire Modbus system may cause damages.

RS-485 specific

The RS-485 consists of three wires:

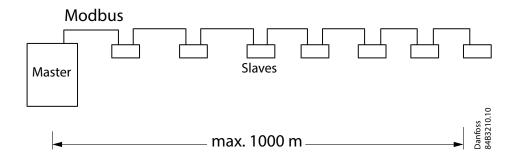
- RS-485-A (D+);
- RS-485-B (D-);
- GND.

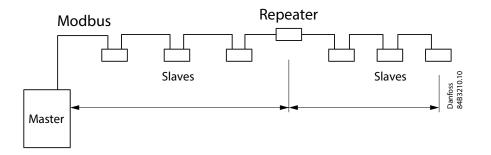
The two wires RS-485-A (D+) and RS-485-B (D-) propagate a differential communication signal. In addition there is the ground wire for the common mode voltage reference.

The recommended maximum Modbus cable length between the EKE(/EKD/EIM) and the system controller should not exceed 1000 meters (3300 feet).

Wire length

Length (m)	Max. baudrate	Min. Wire size	Suggested types
1000	125 K	AWG22	Belden 3106A / 3107A

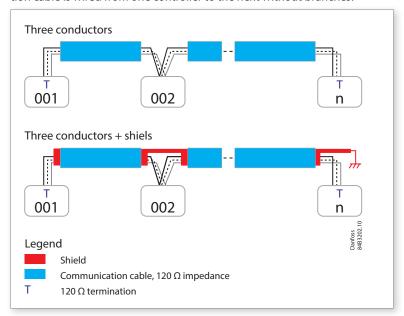

RS-485: Controllers


The maximum number of controllers that can be connected to a Modbus line is 120. One repearter must be added for every 32 controllers. If the data communication cable runs through an electrically noisy environment which impairs the data signal, one or more repeaters must be added to stabilize the signal.

Repeater

A repeater has no address.

A repeater from the company "Phoenix" can be used: Danfoss code no. = 084B2240 (type AKA 222).



Topology

Standard topology

The controller should be connected according to the bus topology. That means that the communication cable is wired from one controller to the next without branches.

Recommendations

Avoid making stubs on the line.

If stubs are present in the network they should be kept as short as possible (<0.3 m at 1 Mbit; <3 m at 50 kbit).

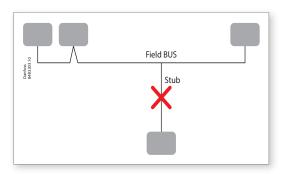


Fig Fieldbus with "STUB" 01

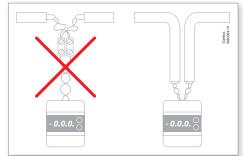


Fig Fieldbus with "STUB" 02

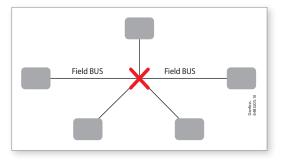


Fig Star topology
Do not use a 'STAR topology'

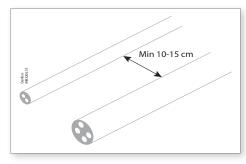
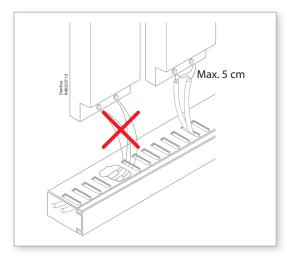
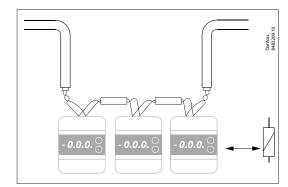


Fig Fieldbus wire


Do not route the fieldbus wires close to power lines or wires leading to heavy loads

Cabinet mounting


Route the wires close to the devices separating the twisted wires only for the shortest possible distance needed for inserting them into the screw terminals.

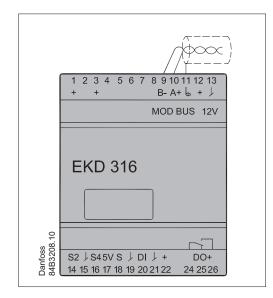
When controllers are installed in a cabinet, internal cable ducting must also comply with the relevant requirements. Use this cable ducting when one or more controllers are installed in a cabinet. The short connections between controllers must also be of the correct cable types.

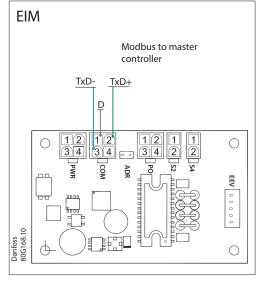
Fig Wires close

- Do not use different wire types on a network, even for short distances.
- Do not route through terminal blocks

Keep a distance to relays, their cables and other things emitting electric noises

Notel

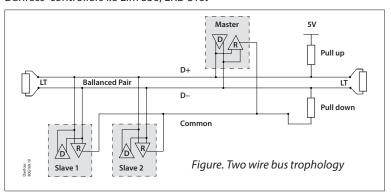

On running/bundling the communication wires very close to high power wires or other sources of electrical noise (frequency converters etc.) could cause electromagnetic interference. Therefore, try to separate the wires from such sources if possible.


Cable connection and termination Modbus

Connect the RS-485 cable to the dedicated terminals of the EKD controller:

- Negative (B-) polarity wire to terminal 9
- Positive (A+) polarity wire to terminal 10
- Cable screen to terminal 11.

For $\ensuremath{\mathsf{EIM}}$, connect it as shown in the figure to terminal COM


Termination

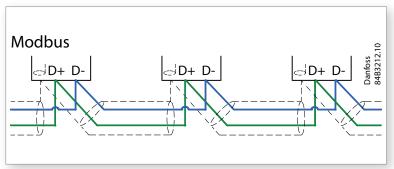
There must be always two terminations on the network, one at each bus end.

The termination can be installed by connecting a 120 Ohm \pm 10 % resistor between D+ and D-for RS-485.

Here is shown a picture of how a Modbus network is typically terminated. The resistors are in this picture called LT (Line Termination) and are typically 120 Ohm.

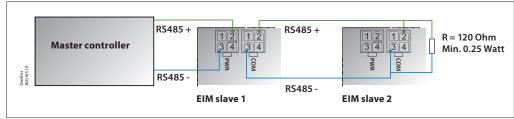
The pull up and pull down are usually built into the master on the Modbus. They are not built in Danfoss controllers i.e EIM 336, EKD 316.

Conductors in a daisy chain


The wires are looped from device to device

D+ is connected to D+

D- is connected to D-


In other words, Start Node (with termination resistor) from Node x to Node Y to End Node (with Termination Resistor)in such a way that the polarity of the wires matches with the polarity of the controller terminals.

Conducters

Shield (drain) should only be connected in one end, not both ends.

In case of EIM, this is how it is done. The communication line in PWR and COM are internally connected.

If two EIMs are connected remember to remove the addressing jumper on one of the EIMs.

Ground connections

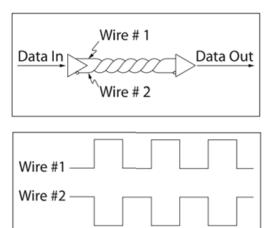
There must be a clean ground connection between all devices connected in the network. In unisolated controller like EKD and EIM, if grounding is required, it should strick followed the guideline as explained on section 3.1

Be careful when connecting the bus to devises that have non isolated communication interfaces. If the units are tied to different ground potentials, this may lead to communication problems or even to damage to the units!

Part 2

Software specification and configuration

Introduction


This Chapter explains how to configure the communication between a EKE(/EKD/EIM) and a system controller, using the Modbus RTU (Remote Terminal Unit) protocol. For detailed information about Modbus communication, refer to Modbus Application Protocol Specifications V1.1b from www.modbus.org

RS-485 Communication

The Electronics Industry Association (EIA) established the RS-485 standard as a guide for developing a multi-drop, bi-directional communication network.

RS-485 systems can be implemented using two-wires or four-wires modes. Danfoss uses the two-wires system with shield. With the two-wires system, communication is half-duplex (cannot transmit and receive at the same time).

The Modbus line uses one twisted–pair line – two wires twisted around themselves. This is known as balanced data transmission. The signal on one wire is ideally the exact opposite of the signal on the second wire. In other words, if one wire is transmitting a high, the other wire will be transmitting the low, and vice versa. Since RS-485 is a multipoint communication system, all devices are connected to the single twisted-pair cable.

The RS-485 system uses master/slave architecture, where each slave device (EKE/EKD/EIM)) has its unique address and responds only to requests packets addressed to this device. The requests packets are generated by the master (system controller), which periodically polls all connected slave devices. Data travels over the single line in both directions.

A basic RS-485 system requires an I/O driver with differential outputs and an I/O receiver with differential inputs. Since the signal is transferred via a twisted pair of wires, if noise or interference is introduced into the line, the voltage difference (between twisted pair wires) of this interference is almost zero. Because the input to the receiver is differential, this interference is eliminated. Differential inputs also ignore different earth potentials of the transmitter and the receiver.

Modbus RTU message

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each byte in a message containing consisting of 11 bit. The format for each byte is shown below.

Start bit	Date by	Date byte				Stop Parity	Stop		

Cooling system	8-bit binary, hexadecimal 0–9, A–F. Two hexadecimal characters contained in each 8-bit field of the message
Bits Per Byte	1 start bit
	8 data bits, least significant bit send first
	1 bit for even/odd parity; no bit for no parity
	1 stop bit if parity is used; 2 bit if no parity
Error check field	Cylindric Redundance Check (CRC)

Danfoss controller follows the standard modbus communication with the following defaults :19200 Baudrate, Even parity and one stop bit.

In EIM/EKD, communication frequency (baudrate) can be one of the following: 9600 baud, 19200 baud and 38400 baud.

The only available fixed communication setting in EKD is 8 data bit, EVEN parity and 1 stop bit. The default unit address is 240 which, can be changed using parameter "03 unit address". Whereas a wide range of selection bits are available in EIM modbus, check the product manual for detail.

Modbus RTU message structure

A typical message frame is shown below.

Start	Addres	ss S	unction	Data	CRC ch	eck En	d
Start	8 bits	8	bits	N x 8 bits	16 bits	en	d
			Examp	ble			
Slave	Function	H1 Byte	Lo byte	Num	Regs		RC
Address	Code	Address	Adress	Hi	Lo	C	nc
A5	03	00	10	00	02	DC	EA

How to access parameters

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. For detail check the section 'Example'

When addressing holding registers on Modbus, the range of valid addresses is 0-65535 (0x0000 to 0xFFFF). In the documentation they are however often described in two different ways.

The first is using register numbers instead of addresses. By this convention the range of valid register numbers is 1-65536, and the register address 0 is referred to as register number 1. Danfoss follows this convention so when reading the PNU (Parameter Number) 117, the actual request asks for data from address 116. So address = PNU - 1.

The second convention defines seperate ranges for different types of registers (coils, discrete inputs, input register and holding registers). The number of available registers were originally limited to 10000 for each type, and in order to easily distinguish between the register types, in manuals etc., each type was assigned a part of the numbering range. In this way holding registers were numbered from 40001 to 50000. The address range is however the same as before so the first holding register with register number 40001 still is addressed on Modbus as address 0. So address = register number – 40001. This convention was introduced by the company Modicon and is therefore often referred to as the Modicon convention.

Modicon conventionway of addressing is available in EIM 336/316 controller only.

RS485 bus function codes overview

EKD/EIM RS485		Function code	Comment
Read PNU 0x0		0x03	Read holding registers
	Write PNU	0x06	Write Single PNU/holding register only

Example	The following examples illustrate various Modbus RTU commands in EKD
Note!	 Requests are shown in blue and the hexadecimal representation of the data on the Modbus. Responses are shown in green. The text in green is an interpretation of the response.
Action	Description
Setup	Switching the Main switch OFF/ON. 1 = Set "r12 Main switch " PNU 117 to 0 (using address 240). 2 = Set "r12 Main switch " PNU 117 to 1 (using address 240).
Result	Verify that the EKD respond the Modbus master with an accept message.
Conclusion	Writing r12 (PNU 117) to 0 [F0][06][00][74][00][00][DC][F1] [F0][06][00][74][00][00][DC][F1] - Slave acknowledges Writing r12 (PNU 117) to 1 [F0][06][00][74][00][01][1D][31] [F0][06][00][74][00][01][1D][31] - Slave acknowledges
Action	Description
Setup	Setting up the Superheat maximum parameter n09 1 = Write "r12 Main switch" PNU 117; Set it to 0. 2 = Write "n09 Max. SH" PNU 3015; Set to 60. 3 = Read "n09 Max. SH" PNU 3015; veryfying step 2.
Result	Reading n09 max. SH i.e. PNU 3015 must be 60.
Conclusion	Write r12 (PNU 117) to 0 [F0][06][00][74][00][00][DC][F1] [F0][06][00][74][00][00][DC][F1] - Slave acknowledges Reading PNU 3015 [F0][03][08][C6][00][01][73][32] [F0][03][02][00][64][C4][7A] - Slave responds 100 Writing PNU 3015 to 60 [F0][06][08][C6][00][3C][7E][E3] [F0][06][08][C6][00][3C][7E][E3] - Slave acknowledges Reading PNU 3015 again [F0][03][08][C6][00][01][73][32] [F0][03][08][C6][00][01][73][32]

Example	The following examples illustrate various Modbus RTU commands in EKD
Note!	 Requests are shown in blue and the hexadecimal representation of the data on the Modbus. Responses are shown in green. The text in green is an interpretation of the response.
Action	Description
Setup	Changing the device address 1 = Read "003 Unit addr. " PNU 2008 using address: 240. 2 = Set "003 Unit addr. " PNU 2008 to 239
Result	 1 = Verify that it's possible to use address 240. 2 = Verify that it's possible to use address 239.
Conclusion	Reading PNU 2008 from ID 240 [F0][03][07][07][00][01][20][67] [F0][03][02][00][F0][C5][D5] – Slave responds 240
	Setting PNU 2008 to 239 on ID 240 [F0][06][07][D7][00][EF][6C][2B] [F0][06][07][D7][00][EF][6C][2B] – Slave acknowledges
	Reading PNU 2008 from ID 240 [F0][03][07][00][01][20][67] No response since the address is changed
	Reading PNU 2008 from ID 239 [EF][03][07][07][00][01][22][08] [EF][03][02][00][EF][11][DF] – Slave responds 239
Action	Description
Setup	Reading Evaporator Pressure 1 = Read "u25 EvapPress Pe " PNU 2543 using Modbus function code 0x03. 2 = Read "u25 EvapPress Pe " PNU 2543 using Modbus function code 0x04.
Result	Note: Read 0x04 function is only available in some selective danfoss controllers. $1 \& 2 = Both Modbus commands responds with the same answer.$
Conclusion	Reading PNU 2543 with function code 03 [F0][03][09][EE][00][01][F2][82] [F0][03][02][00][87][85][F3] – Slave responds 135
	Reading PNU 2543 with function code 04 [F0][04][09][EE][00][01][47][42] [F0][04][02][00][87][84][87] – Slave responds 135
Action	Description
Setup	Setting the controller in Manual mode Set "o45 Manual OD%" PNU 2064 to 45.
Result	Verify that the message and responds are: Message: 0xA5 0x06 0x08 0x0F 0x00 0x2D 0x62 0x90 Responds: 0xA5 0x06 0x08 0x0F 0x00 0x2D 0x62 0x90
Conclusion	Setting PNU 2064 to 45

Example	The following examples illustrate various Modbus RTU commands in EKD
Note!	 Requests are shown in blue and the hexadecimal representation of the data on the Modbus. Responses are shown in green. The text in green is an interpretation of the response.
Action	Description
Setup	Examples explaining some illegal addressing and request with 0x03 (Read function) and 0x06 (Write).
Result	The device must respond with illegal address or no response.
Conclusion	Read 2 register starting from PNU 2008 from slave 240 [F0][03][07][D7][00][02][60][66] [F0][83][02][91][02] - slave responds illegal address because 2009 is not defined
	Read o03 unit address (PNU 2008) from slave 240 with wrong CRC [F0][03][07][07][00][01][20][68] no response
	Read PNU 2009 (undefined) from slave 240
	[F0][03][07][D8][00][01][10][64] [F0][83][02][91][02] - slave responds illegal address because 2009 is not defined
	Write 2 to r12 main switch (PNU 117) on slave 240 [F0][06][00][74][00][02][5D][30] [F0][86][03][53][92] - slave responds illegal data
	Write 1 to PNU 118 (undefined) on slave 240 [F0][06][00][75][00][01][4C][F1] [F0][86][02][92][52] - slave responds illegal address
	Write 1 to r12 main switch (PNU 117) on slave 240 with wrong CRC [F0][06][00][74][00][01][1D][31] no response
	Use function code 5 (undefined) [F0][05][00][74][00][01][59][31] [F0][85][01][D2][A3] - slave responds illegal function

Example	The following examples illustrate various Modbus RTU commands in EIM
Note!	1. Requests are shown in blue and the hexadecimal representation of the data on the Modbus . 2. Responses are shown in green. The text in green is an interpretation of the response.
Action	Description
Setup	Switching the Main switch OFF/ON (using address 165).
Conclusion	Reading r12 main switch (PNU 117) [A5][03][00][74][00][01][DD][34]
	[A5][03][02][00][00][C9][9D] – Slave responds 1
	Setting r12 main switch (PNU 117) to 1
	[A5][06][00][74][00][01][11][34] [A5][06][00][74][00][01][11][34] - Slave acknowledges
	Setting r12 main switch (PNU 117) to 0
	[A5][06][00][74][00][D0][F4] [A5][06][00][74][00][00][D0][F4] – Slave responds 0
Action	Description
-	Description
Setup	Setting up the Superheat Max. SH value on address 165
Conclusion	Reading PNU 3015
	[A5][03][0B][C6][00][01][7F][37] [A5][03][02][00][A0][C9][E5] – Slave responds
	Setting PNU 3015 to 100
	[A5][06][0B][C6][00][64][73][1C] [A5][06][0B][C6][00][64][73][1C] – Slave acknowledges
	Reading PNU 3015 again [A5][03][0B][C6][00][01][7F][37]
	[A5][03][02][00][64][C8][76] – Slave responds 100
Action	Description
Setup	Changing EIM addressing from PNU to Modicon addressing
Conclusion	Reading PNU 64200 (Modbus translation table)
	[A5][03][FA][C7][00][01][1C][0B] [A5][03][02][00][00][C9][9D] – Slave responds 0 (use PNU)
	Setting PNU 64200 to 1
	[A5][06][FA][C7][00][01][D0][0B] [A5][06][FA][C7][00][01][D0][0B] – Slave acknowledges
	Reading PNU 64200 again
	[A5][03][FA][C7][00][01][1C][0B]
	[A5][03][02][00][01][08][5D] – Slave responds 1

Example	The following examples illustrate various Modbus RTU commands in EIM
Note!	 Requests are shown in blue and the hexadecimal representation of the data on the Modbus. Responses are shown in green. The text in green is an interpretation of the response.
Action	Description
Setup	Switching the Main switch OFF/ON with Modicon addressing
Conclusion	Setting Modicon 40011 (r12 main switch) to 0
	[A5][06][00][0A][00][B0][EC]
	[A5][06][00][0A][00][00][B0][EC] – Slave acknowledges
	Reading Modicon 40011 (r12 main switch)
	[A5][03][00][0A][00][01][BD][2C]
	[A5][03][02][00][09][9D] - Slave responds 0
	Setting Modicon 40011 (r12 main switch) to 1
	[A5][06][00][0A][00][01][71][2C]
	[A5][06][00][0A][00][01][71][2C] – Slave acknowledges
	Reading Modicon 40011 (r12 main switch) again
	[A5][03][00][0A][00][01][BD][2C]
	[A5][03][02][00][01][08][5D] – Slave responds 1
Action	Description
Setup	Reading the registers with Modicon addressing.
Conclusion	Reading Modicon 40001 to 4004
	[A5][03][00][00][04][5D][2D]
	[A5][03][08][FC][E0][07][08][05][DC][00][00][4D][7A] – Slave responds -800, 1800, 1500, 0

Appendix.1

EIM Modbus Conversion table

Parameter	PNU	Modicon address	Parameter	PNU	Modicon address	Parameter	PNU	Modicon address
u25 EvapPress Pe	2543	40001	Tn Te	3116	40034	Rfg.Fac.A3	2550	40067
u20 S2 temp.	2537	40002	n20 Kp T0	3025	40035	Standby	20000	40068
u16 S4 air temp.	2531	40003	o18 Manual ctrl.	2075	40036	EKC Error	20001	40069
u27 Temp. S3	2545	40004	LOC Trig	50003	40037	S2 Error	20002	40070
Ctrl Status	3100	40005	LOC Reset	50004	40038	S4 Error	20004	40071
u26 EvapTemp Te	2544	40006	LOC Timer	50005	40039	Pe inp.error	20005	40072
u22 SuperheatRef	2535	40007	LOC SH Trig	50007	40040	No Rfg. Sel.	20006	40073
u21 Superheat	2536	40008	o03 Unit addr.	2008	40041	Valve error	20007	40074
u24 Opening %	2542	40009	Unit Addr. 2	2009	40042	Reset alarm	2046	40075
LOC Alarm	50006	40010	Modbus Baud	50060	40043	n37 Max steps	3032	40076
r12 Main switch	117	40011	ModbusParity	50061	40044	n38 Max StepsSec	3033	40077
Te Reference	3117	40012	ModbusStopB	50062	40045	n39 Start BckLsh	3034	40078
Comp Speed	3120	40013	ClosedValveT	3101	40046	n40 Backlash	3035	40079
ext EvapPress P0	2643	40014	Def Activate	50011	40047	n56 MotorCurrent	3051	40080
ext S2 temp	2644	40015	Def Hold OD	50008	40048	Factory2User	64060	40081
Diff MOP	3121	40016	Def HoldTi 1	50009	40049	User2Factory	64062	40082
r09 Adjust S2	113	40017	Def HoldTi 2	50010	40050	ControlState	3099	40083
o45 Manual OD%	2064	40018	Max SH shdw	64301	40051	LOC Tmr	3102	40084
n09 Max SH	3015	40019	Min SH shdw	64302	40052	Avg Opening	50033	40085
n10 Min SH	3021	40020	Tn SH shdw	64303	40053	OpenHighRes	50052	40086
n22 SH close	3027	40021	Alpha shdw	64304	40054	InputMeas 1	64050	40087
Tn SH	3103	40022	DefHold shdw	64305	40055	InputMeas 3	64052	40088
n11 MOP	3013	40023	SWVer shdw	64306	40056	Sw. version	2003	40089
SH Low	3105	40024	Startup	64307	40057	OrderNoLow	2011	40090
SH High	3106	40025	n15 StartUp time	3017	40058	OrderNoHigh	2015	40091
Gain High	3107	40026	n17 Start OD %	3012	40059	Avg KT0 Time	50020	40092
Gain Low	3108	40027	Off Min.OD %	64308	40060	Avg OD 3hour	50021	40093
Tau High	3109	40028	HwMainSwitch	64100	40061	Avg CompTime	50022	40094
Tau Low	3110	40029	o20 MinTransPres	2034	40062	AvgFltTime	3118	40095
Alpha	3111	40030	o21 MaxTransPres	2033	40063	Modbus trans	64200	Not avail-
Кр МОР	3113	40031	o30 Refrigerant	2551	40064			able in BO
Tn MOP	3114	40032	Rfg.Fac.A1	2548	40065			address range
Кр Те	3115	40033	Rfg.Fac.A2	2549	40066			

For detail description on the above parameters, please refer to the product user guide

Appendix 2

EKD modbus table

Parameter	PNU		
r05 Temp.unit	105		
r09 Adjust S2	113		
r10 Adjust S3	114		
r12 Main switch	117		
A34 Battery low	10035		
n03 Valve type	3002		
n04 Kp factor	3003		
n05 Tn seconds	3004		
n06 Td seconds	3005		
n09 Max SH	3015		
n10 Min SH	3021		
n11 MOP	3013		
n15 Start time	3017		
n17 MinOdAtStart	3012		
n18 Stability	3014		
n19 Kp min.	3024		
n20 Kp T0	3025		
n21 SH mode	3026		
n22 SH close	3027		
n32 ETS OD% Max	3023		
Kp Actual	64090		
n37 Max steps	3032		
n38 Max StepsSec	3033		
n39 Start BckLsh	3034		
n40 Backlash	3035		
n42 Comp. dir.	3037		
n43 Atten.Factor	3038		
n44 TnT0 sec.	3039		
n45 Min.Lim.Ref	3040		
n56 MotorCurrent	3051		
EKC state	2007		
o10 Al type	2027		

Parameter	PNU		
o18 Manual ctrl.	2075		
o20 MinTransPres	2034		
o21 MaxTransPres	2033		
o30 Refrigerant	2551		
o45 Manual OD%	2064		
o56 Reg. type	2076		
o61 Appl.mode	2077		
Rfg.Fac.A1	2548		
Rfg.Fac.A2	2549		
Rfg.Fac.A3	2550		
Sw. version	2003		
OrderNoLow	2011		
Factory2User	64060		
Open Hyst.	64091		
Close Hyst.	64092		
Cal.Interval	64093		
Alarm relay	2509		
Reset alarm	2046		
u06 Analog input	2504		
u10 DI status	2002		
u20 S2 Temp	2537		
u21 Superheat	2536		
u22 SuperheatRef	2535		
u24 Opening OD%	2542		
u25 EvapPres Pe	2543		
u26 EvapTemp Te	2544		
u27 Temp S3	2545		
P67 Open Hyst.	2181		
P68 Close Hyst.	2182		
P69 OvD Enable	2183		
P70 OvDProtect T	2184		
P71 ForcedCloseT	2185		

For detail description on the above parameters, please refer to the product user guide/installation guide.

ENGINEERING TOMORROW

Appendix 3.

Modbus exception code

For a full explanation of the structure of an exception code response, please refer to the Modbus specification."

Code	Name	Meaning
1	Illegal function	This function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.
2	Illegal data adress	The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, a request with offset 96 and length 4 would succeed. a request with offset 96 and length 5 will will generate exeption 02.
3	Illegal data value	A value contained in the query data field is not an allowable value for the server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in the register has a value outside the expectation of the application program since the Modbus protocol is unaware of the significance of any particular value of any particular register.
4	Slave device failure	An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.

Appendix 4.

Following are some of the free modbus tool available on the Internet.

Please note that Danfoss doesn't provide any support on any third party modbus communication tools.

Some non commercial free programs are:

ModbusMat - http://www.ataytugal.com/ModbusMat.htm

Modbus Request Pro:

http://forums.mrplc.com/index.php?app=downloads&showfile=465

Please note that there may be restrictions on the use of above stated modbus tools for commercial applications

For your own notes					

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.