
User Manual

PLUS+1® GUIDE Software
Autonomous Control Library Function
Blocks

www.danfoss.com

http://www.danfoss.com

Revision history Table of revisions

Date Changed Rev

June 2025 Updated document for ACL 4.0. Added boundary function blocks and more background

information.

0109

August 2024 Updated document for ACL 3.2. 0108

February 2024 Updated document for ACL 3.1. 0107

October 2023 Added path blocks and licensing information. 0106

December 2022 Added Line Follower and Line Yaw Estimate function blocks, and updated function blocks. 0105

May 2022 Added and updated function blocks. 0104

December 2021 Two new function blocks, Post Detection and Projected path. 0103

October 2021 Added new function blocks to the library. 0102

January 2020 First edition 0101

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

2 | © Danfoss | June 2025 AQ295075513101en-000109

Library Introduction

Acronyms...8
Autonomy Glossary... 8
Licenses Required.. 10
Versions Required.. 12
Documents to use..12

Background on Autonomous Machines

Perception.. 13
Point Clouds... 14

Positioning..14
Global or World Coordinate System.. 15
Local Coordinate System... 17
Machine Coordinate System.. 18
Sensor Coordinate System.. 19
Yaw, Yaw Rate, and Velocity... 20
Autonomous Library Blocks..21

Navigation.. 21

Application Recommendations

Hardware and System Compatibility..23
Software Libraries.. 23
Autonomy Software System Template.. 24
Autonomy Function Block Template..25
Pre-Made Service Tool Screens... 25
Modify JSON and Update MD5... 27
Getting Files from XM100... 29
Restart or Resume Recording After ECU Power Loss.. 29

How ACL Blocks Work Together

Common Software Set-Up..32
Save Processing Time... 33
Using Namespaces.. 34
Change Namespace Value..34
Delete the Old Function Block C Code...35
Troubleshooting Common Errors.. 36

Ackermann_Yaw_Rate Function Block

Inputs..37
Outputs..38

Angle_To_Curv Function Block

Inputs..40
Parameters..40
Outputs..40

Boundary_Converter Function Block

Application Information.. 44
Example... 44
Inputs..47
Parameters..48
Outputs..49
Internal Signals... 49
Boundary_Converter Troubleshooting..49

Boundary_Extract Function Block

Application Information.. 51
Example... 52
Inputs..53
Parameters..53
Outputs..53
Internal Signals... 54

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Contents

© Danfoss | June 2025 AQ295075513101en-000109 | 3

Boundary_Extract Troubleshooting..54

Boundary_Loader Function Block

Application Information.. 57
Example... 57
Inputs..59
Parameters..60
Outputs..60
Internal Signals... 60
Boundary_Loader Troubleshooting..61

Boundary_Recorder Function Block

Application Information.. 64
Example... 66
Inputs..70
Parameters..71
Outputs..72
Internal Signals... 72
Boundary_Recorder Troubleshooting..73

Curv_To_Angle Function Block

Inputs..75
Parameters..75
Outputs..76

Data_Lockers Helper Block

Example... 78

Edge_Detect Function Block

Inputs..80
Parameters..80
Outputs..81

Extract_Ring Function Block

Inputs..82
Parameters..83
Outputs..83

Geofence_Check Function Block

Application Information.. 86
Example... 86
Inputs..87
Outputs..87
Internal Signals... 88
Geofence_Check Troubleshooting..88

LiDAR_Filter Function Block

Application Information.. 91
Example... 92
Inputs..94
Parameters..94
Outputs..96
Internal Signals... 96
LiDAR_Filter Troubleshooting...97

LiDAR_Mask Function Block

Inputs..99
Parameters ...99
Outputs..99
Internal Signals...100

Line_Follower Function Block

Example...103
Inputs... 103

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Contents

4 | © Danfoss | June 2025 AQ295075513101en-000109

Outputs... 104

Line_Yaw_Estimate Function Block

Example...106
Inputs... 107
Outputs... 107

Obstacle_Avoidance Function Block

Inputs... 110
Parameters... 110
Outputs... 111

Obstacle_Detect Function Block

Application Information..113
Example...114
Inputs... 116
Parameters... 117
Outputs... 117
Obstacle_Detect Troubleshooting..118

Obstacle_Detect_Area Function Block

Application Information..121
Example...121
Inputs... 121
Parameters... 121
Outputs... 122
Obstacle_Detect_Area Troubleshooting.. 122

Origin Function Block

Inputs... 124
Parameters .. 125
Outputs... 126

Path_Converter Function Block

Application Information..127
Example...128
Inputs... 129
Parameters... 131
Outputs... 131
Internal Signals...131
Path_Converter Troubleshooting..131

Path_Extract Function Block

Application Information..133
Example...134
Inputs... 134
Parameters... 135
Outputs... 135
Internal Signals...136
Path_Extract Troubleshooting..136

Path_Follower Function Block

Application Information..138
Inputs... 139
Parameters .. 140
Outputs... 141

Path_Follower_Adv Function Block

Application Information..144
Example...144
Inputs... 145
Parameters... 145
Outputs... 146

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Contents

© Danfoss | June 2025 AQ295075513101en-000109 | 5

Internal Signals...147
Path_Follwer_Adv Troubleshooting.. 148

Path_Loader Function Block

Application Information..149
Example - One Path.. 150
Example - Multiple Paths.. 151
Inputs... 153
Parameters... 153
Outputs... 153
Internal Signals...154
Path_Loader Troubleshooting..154
JSON File Path Errors.. 155

Path_Recorder Function Block

Application Information..157
Example...157
Inputs... 159
Parameters... 160
Outputs... 161
Internal Signals...161
Path_Recorder Troubleshooting..162

Planar_Surface_Segmentation Function Block

Application Information..164
Configure the LiDAR..165
Configure the Region of Interest.. 166
Find a Plane.. 168
Configure the Inlier Point Cloud...169

Example...170
Check Internal Signals.. 172
Reduce Processing Time..174

Inputs... 175
Parameters... 175
Outputs... 177
Planar_Surface_Segmentation Troubleshooting.. 177

Position_Filter Function Block

Inputs... 178
Outputs... 180

Post_Detect Function Block

Application Information..184
Example...184
Inputs... 186
Parameters... 186
Outputs... 186
Post_Detect Troubleshooting...187

Projected_Path Function Block

Inputs... 188
Parameters... 189
Outputs... 189

Projected_Path_Area Function Block

Application Information..193
Example...194
Inputs... 196
Parameters... 197
Outputs... 197
Internal Signals...198
Projected_Path_Area Troubleshooting...199

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Contents

6 | © Danfoss | June 2025 AQ295075513101en-000109

Reflector_Detect Function Block

Application Information..202
Example...203
Inputs... 205
Parameters... 205
Outputs... 206
Reflector_Detect Troubleshooting... 207

Relative_Pos Function Block

Inputs... 208
Outputs... 209

Transform_3D Function Block

Inputs... 210
Parameters... 211
Outputs... 211
Internal Signals...211

Transform_GNSS Function Block

Application Information..216
Example...218
Inputs... 220
Parameters... 221
Outputs... 222
Internal Signals...223
Transform_GNSS Troubleshooting... 223

Two_Point_Planner Function Block

Inputs... 224
Parameters... 225
Outputs... 225

UTM_Conv Function Block

Inputs... 227
Outputs... 227

UTM_Conv_Zone Function Block

Inputs... 229
Outputs... 230

Wall_Detect Function Block

Inputs... 232
Parameters... 232
Outputs... 232

Yaw_Estimate Function Block

Inputs... 235
Parameters... 235
Outputs... 235

Third Party Licenses

cJSON License... 237
TinyEKF License.. 237

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Contents

© Danfoss | June 2025 AQ295075513101en-000109 | 7

The autonomous control function block library offers a quick and easy way to develop PLUS+1® GUIDE
applications that provide the foundation for autonomous machine control systems.

Using the function blocks in this library, developers can create applications that allow machines to
navigate environments without an operator.

Autonomous machine applications are comprised of several core sub-systems built with the autonomous
control function blocks:
• Perception: These blocks use radar systems, laser-based (LiDAR) systems, and ultrasonic sensors to

help the machine see its surrounding environment. The LiDAR scanner detects reflectors, posts, walls,
and other obstacles.

• Positioning: These function blocks provide information about a machine's location. The machine
either needs GPS to know where it is, or a specific point must be entered for the machine to know
where it starts. Machines use 2-D orientation using a X and Y plane, rather than a full 3-D with Z
(height) orientation. The machines must be on one level.

• Navigation: These function blocks help autonomous machines reach their destination. Navigation
blocks can only be utilized after the machine is aware of its position.

• Utility: These generic blocks are not specific to the perception, positioning, or navigation categories,
but they are useful for implementing autonomous functions.

Acronyms

Acronyms used in the library user manual are described.

Acronym Meaning

ACL Autonomous Control Library

CAN Controller Area Network

ECU Electronic Control Unit

ENU East/North/Up

GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

NED North/East/Down

UTM Universal Transverse Mercator

Autonomy Glossary

The following list describes glossary terms used in the Autonomous Control Library (ACL), Plus+1

Compliant Ouster Block User Manual, and Plus+1 Compliant LeiShen Block User Manual. Most terms are
explained in Background on Autonomous Machines on page 13.

Azimuth - Horizontal angle or an angle in the XY plane from a reference direction to a point of interest.
For example, a LiDAR sensor's field-of-view is limited to make a specific azimuth.

Azimuth Window - The contiguous horizontal space within a 360 degree scanning area where LiDAR
sensors collect data about their environment.

Bearing - Absolute or relative angle from the machine to the target. This includes the polar coordinates
along with a distance.

Band - In the Universal Transverse Mercator (UTM) system of making a grid of the Earth to get a location,
a band is every 8 degrees in the latitude direction, using the labels C to X.

Channel - In ACL, a channel refers to one point cloud ring row around a LiDAR sensor, so a 64 channel
LiDAR means that there are 64 rows of stacked rings.

Course Over Ground (COG) - The machine's actual direction of travel. This is equivalent to yaw for most
land-based machines without slipping or sliding.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Library Introduction

8 | © Danfoss | June 2025 AQ295075513101en-000109

Curvature - In ACL, this refers to how sharp the machine should turn. Curvature is defined as the inverse
of the turning radius. Due to East-North-Up (ENU), positive values are left curves and negative values are
right curves when driving forward.

Data locker - In ACL, this is a shared memory infrastructure that allows other function blocks to store and
access data simultaneously without having large data structures in PLUS+1® GUIDE. See Data_Lockers

Helper Block on page 77.

East-North-Up (ENU) - A reference frame where coordinates start at 0° facing East, move in a positive
direction going North, and move in a negative direction going South. East (X), North (Y), and Up (Z) are
each relative to a local origin. ACL uses ENU and not the other common reference frame, North-East-
Down (NED).

Easting - Generally used in UTM to refer to the X coordinate being East of the UTM zone's origin. In ACL,
Easting aligns with latitude and is written as X in many function blocks.

Elevation - In ACL, this is usually the vertical angle from a LiDAR sensor to a point of interest.

Field-of-View (FOV) - This refers to the horizontal and/or vertical areas where a LiDAR sensor collects
data or visualizes its environment. For example, a LiDAR could have a 90 degree vertical field-of-view.

Global or World coordinate - A unique position on Earth. For example, a machine's position could be at
45° N latitude and 135° W longitude.

Heading - Direction the front of the machine is facing. Heading is 0° when pointing East and 90° when
pointing North.

LiDAR (Light Detection and Ranging) - A sensor that provides data about the machine's surrounding
environment. It measures the distance from itself to objects with lasers.

Local coordinate - A position relative to a local landmark. For example, a machine's position relative to a
building or the machine's starting position.

Machine's origin - The coordinate origin on the machine, which moves with the machine. It is
recommended to have this origin at the machine's steering point.

Machine - In ACL, a machine refers to any type of vehicle or mobile machinery.

Northing - Generally used in UTM to refer to the Y coordinate being North of the UTM band's origin. In
ACL, Northing aligns with longitude and is written as Y in many function blocks.

Orientation - Angles of features relative to the sensor, or sensor relative to machines. This references the
angles and not the position.

Origin - The base point of a rigid reference frame with the coordinates (0,0,0). There are many reference
frames which all have origins and axes. In ACL, there could be a global origin, local origin, machine origin,
and sensor origins for each hardware device.

Pose - A term referring to both position and orientation. This is commonly used in the Robot Operating
System (ROS) simulation program.

Pitch - The angle of rotation around the y-axis. In ACL, a machine pitching down and forward has a
positive angle, and up and backward has a negative angle.

Point - In ACL, LiDAR sensor points refer to a coordinate point with X, Y, and Z data. These include data
about reflectivity, ambiance, and spherical coordinates.

Point cloud - All the LiDAR sensor points from the LiDAR scan are known collectively as a point cloud and
allow a machine to perceive its surrounding environment. Each point's position has its own set of
Cartesian coordinates, which can be 2D or 3D (X, Y, Z) depending on the LiDAR.

Range - In ACL, this refers to the maximum distance a LiDAR sensor sees in its environment, such as 9000
mm. It also indicates a span between numbers, such as 50-100.

Relative Position - The position of something relative to something else. In ACL, this usually refers to a
machine relative to something in the environment, such as the local origin.

Resolution - A vertical resolution refers to the number of laser beams or channels the LiDAR sensor uses
to scan the environment, impacting the density and detail of the point cloud. A horizontal resolution

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Library Introduction

© Danfoss | June 2025 AQ295075513101en-000109 | 9

refers to the number of times a laser pulses in one full rotation. Higher resolution means more points per
unit area, allowing for finer distinctions between objects and surfaces.

Right-hand rule - A convention which defines the orientation of axes in three-dimensional space. For
example, the right hand extends in front of a person with their thumb pointing to the sky, indicating Z.
The fingers pointing straight ahead indicate the direction something travels, and curling the fingers into
a fist indicates a positive rotation direction.

Ring - In ACL, rings refer to a circular point cloud row around a LiDAR sensor. One ring row is known as a
channel, so a 64 channel LiDAR means that there are 64 rows of stacked rings.

Roll - The angle of rotation around the x-axis. In ACL, a machine rolling down to the right has a positive
angle, and down to the left has a negative angle.

Steering Point - The location or point in the machine with no lateral motion. It is recommended to have
this as the machine's origin. In ACL, the machine's origin is sometimes simultaneously referred to as the
steering point.

Universal Transverse Mercator (UTM) - A standard way of turning the round Earth into a rectangular
grid which consists of zones and bands.

Waypoint - An intermediate point on a path or route. In ACL, a waypoint usually contains information
about a machine's relative XY position, yaw, velocity and ancillary data.

Yaw - The angle of rotation around the z-axis. In ACL, a machine rotating counterclockwise is positive and
clockwise is negative. Yaw can also refer to the direction the machine faces (heading).

Yaw rate - The rate in degrees per second of the machine turning around the z-axis. For example, a
machine turning from 45 to 50 degrees in one second has a yaw rate of 5 degrees per second.

Zone - ACL includes two different and unrelated types of zones. Zone boxes in function blocks like
Obstacle_Detect show a small area, or zone, around the machine. In the Universal Transverse Mercator
(UTM) system of making a grid of the Earth to get a location, a UTM zone is every 6 degrees in the
longitude direction, using the labels 1 to 60.

Licenses Required

The Autonomous Control Library (ACL) function blocks require a license after the 3.0 version.

Licenses are divided into two categories, Essentials and Advanced. Advanced includes more complex
function blocks that have the ability to record paths and have the machine follow them. The levels of
autonomy, which refer to how much humans are involved in driving the machine, do not affect the
categories.

Software License Information

Question Essentials Advanced

How much does this license cost? Free with Plus+1 GUIDE Professional
subscription.

Reach out to the account manager.

How does payment work? These blocks will always be free with
the purchase of a PLUS+1 GUIDE Pro
subscription.

This is a one-time payment which
grants access to all Advanced blocks
keyed to a specific piece of hardware,
even new blocks in future releases.
Buy the specific hardware with this
license on it, in addition to the PLUS
+1 GUIDE Pro subscription. Each
hardware requires its own license.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Library Introduction

10 | © Danfoss | June 2025 AQ295075513101en-000109

Software License Information (continued)

Question Essentials Advanced

Which hardware does the license
cover?

All past and future XM100 and
DM1000 products.

New XM100 hardware. If using old
hardware, contact the account
manager to discuss options.
Additional hardware products will be
added in the future.

What are the benefits of each
category?

• Free.

• Includes blocks from ACL version
1.0 - 3.0.

• More complex blocks.

• Easier to connect in applications.

• Ability to record paths and follow
them.

Blocks include a logo in the corner marking their category. The images show the Essential function blocks
which either have no logo or an E, depending on their version. The Advanced function blocks have an A.

Additionally, certain function blocks fall into each category. Advanced includes all the blocks in the
Essentials list.

ACL Blocks in Each Category

Essential Blocks Advanced Blocks

• Ackermann_Yaw_Rate

• Angle_To_Curv

• Curv_To_Angle

• Data_Lockers

• Edge_Detect

• Extract_Ring

• LiDAR_Mask

• Line_Follower

• Line_Yaw_Estimate

• Obstacle_Avoidance

• Obstacle_Detect

• Origin

• Path_Follower

• Position_Filter

• Post_Detect

• Projected_Path

• Reflector_Detect

• Relative_Pos

• Transform_3D

• Transform_GNSS

• Two_Point_Planner

• UTM_Conv

• UTM_Conv_Zone

• Wall_Detect

• Yaw_Estimate

Includes all Essential blocks, as well as these:

• Boundary_Converter

• Boundary_Extract

• Boundary_Loader

• Boundary_Recorder

• Geofence_Check

• LiDAR_Filter

• Obstacle_Detect_Area

• Path_Converter

• Path_Extract

• Path_Follower_Adv

• Path_Loader

• Path_Recorder

• Planar_Surface_Segmentation

• Projected_Path_Area

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Library Introduction

© Danfoss | June 2025 AQ295075513101en-000109 | 11

To see which function blocks belong in different categories in PLUS+1® GUIDE, click on the drop-down
within the Function tab and select a version of the Autonomous Control Library.

The image above displays the categories and filtering options associated with version 3.0 or later. Future
releases will include more categories, such as Premium and Ultra.

Versions Required

The Autonomous Control Library version 4.0 function blocks successfully compile in PLUS+1® GUIDE
version 2024.2 and later, Service Tool version 12.2 or later, and XM100 hardware version 3.21 or later. It is
recommended to use Service Tool version 2024.1 or later when using the media file manager.

Documents to use

Below are recommended documents to use in conjunction with the Autonomous Control Library (ACL)
function blocks.

Find comprehensive technical literature online at https://www.danfoss.com.

Documents Needed for Autonomy

Title Type Document Number

LeiShen LiDAR Block User Manual AQ448276254591

Ouster LiDAR Function Block User Manual AQ404281942428

PLUS+1® Function Block Library - Autonomous Control
Function Blocks

User Manual AQ295075513101

PLUS+1® GUIDE Software User Manual AQ152886483724

PLUS+1® XM100 Autonomous Controller Data Sheet AI379058006235

PLUS+1® XM100 Autonomous Controller Technical Information BC394784770000

PLUS+1® XM100 Reliability Data MTTF Safety Manual BH409064980476

XM100 HW Description - Application Interface* API Specification 70493872v322

*Note that the most accurate API Specification is found within PLUS+1® GUIDE under Project Manager >
HWD > XM100 rather than the Hardware tab. LiDAR documentation only applies when using that
hardware.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Library Introduction

12 | © Danfoss | June 2025 AQ295075513101en-000109

https://www.danfoss.com

Perception

An autonomous machine requires sensors to detect and avoid obstacles during navigation.

Ultrasonic sensors can detect objects that are in close range to the autonomous machine. With their
conical detection zone and an offering of a scalar distance value to the nearest object, these sensors are
useful for emergency braking and in safety curtain scenarios.

Control Area Network, or CAN-based, sensors can easily integrate with the Autonomous Control Library.
Radar systems are well suited to detect obstacles for autonomous machines due to their ability to
operate in harsh conditions.

LiDAR (Light Detection and Ranging) systems also provide some obstacle data due to their more accurate
distance readings. LiDAR sensor hardware uses lasers to scan the environment, picking up distance and
reflective surfaces. Many LiDAR sensors capture information in 3D.

The image above shows a LiDAR sensor on top of a machine getting information about the surrounding
environment in the X, Y, and Z plane. Azimuth refers to the horizontal angle, and elevation refers to the
vertical angle.

Dots, referred to as points, appear in a circular ring around the LiDAR scanner that stack in rows. One ring
row is known as a channel, so a 64 channel LiDAR means that there are 64 rows of stacked rings.
However, the first row is written as row zero, so the 64-channel LiDAR has rows 0-63. Whether ring row 0
starts at the ground or the top depends on the LiDAR hardware.

LiDAR scanners come with different channel counts, and higher channel counts have more data points
with a clearer picture of the environment. Most LiDAR's come in 16, 32, 64, or 128 channels.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

© Danfoss | June 2025 AQ295075513101en-000109 | 13

The image above shows rows of horizontal rings with objects identified by the LiDAR scanner. The image
below shows a photo of the room.

Ouster LiDAR scanners work well with ACL function blocks, and there is an Ouster_LiDAR compliance
block to go with the scanner. See the Plus+1 Compliant Ouster Block User Manual for information.

Point Clouds

All the points from the LiDAR scan are known collectively as a point cloud.

A point cloud is a set of data points in space, and each point's position has its own set of Cartesian
coordinates, which can be 2D or 3D (X, Y, Z) depending on the LiDAR. The Autonomous Control Library
(ACL) blocks use data from the point clouds to perceive the environment so the machine can decide what
actions to take.

ACL blocks utilize ordered point clouds, which means each point is accounted on the scan with its own
coordinates. However, to speed up data processing time, ACL blocks can also use unordered point
clouds. This is when some data points are skipped over so a smaller picture forms, such as removing a few
rows of rings from what the LiDAR calculates. Ordered point clouds can convert to unordered point
clouds, but unordered point clouds cannot convert to ordered point clouds.

The point cloud information from one function block automatically flows to a storage space known as a
data locker, and then other function blocks can use that information. ACL blocks use the following signals
to indicate types of point clouds and whether they are input or output signals:

Point Cloud Signal Names

Signal Name Description

O_PtCld The data locker ID of an ordered point cloud data.

O_PtCld_In The data locker ID of input ordered point cloud data.

O_PtCld_Out The data locker ID of output ordered point cloud data.

PtCld The data locker ID of ordered or unordered point cloud data.

U_PtCld The data locker ID of unordered point cloud data.

Positioning

The physical location of the machine must be determined so the machine can operate autonomously.

The machine determines its starting place from a Global Navigation Satellite System (GNSS) or from a
point being programmed into the autonomy software. There are multiple origins and coordinate systems
used, including global, local, machine, and sensor.

Data from GNSS, Inertial Measurement Units (IMU), steering angle sensors, and wheel speed sensors can
produce a constant and reliable estimate of a machine's location when processed by a position filtering
algorithm.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

14 | © Danfoss | June 2025 AQ295075513101en-000109

Ideally, align the various coordinate systems to the machine's coordinate system. It is recommended to
calibrate the coordinate systems to align at zero degrees.

Global or World Coordinate System

The global coordinate system is a reference frame which tracks where the machine is located in the
world. Machines need to know their location within the surrounding environment by using either global
or local coordinate data.

A global coordinate system uses the Equator and Prime Meridian to specify the location of objects on
Earth.

The left image from Encyclopedia Britannica, Inc.
©

 shows the Earth with parallels of latitude and
meridians of longitude, which are used in a global coordinate system. The right image from AutoCAD
2023 Help

©
 displays angles with the center of the Earth as the origin. For example, an object at 45°N,

45°W means that it is at a 45° angle north of the Equator and a 45° angle west of the Prime Meridian.

Latitude and longitude in ACL blocks consist of the following:
• Use as decimals rather than degrees, minutes, seconds. For example, 45° 30' 2'' would be written as

45.5005556
• East and North are positive. For example, 45°N, 25°E would be written as 45.0000000, 25.0000000.
• West and South are negative. For example, 45°S, 25°W would be written as -45.0000000, -25.0000000.

The global longitude and latitude coordinates must be converted into the Universal Transverse Mercator
(UTM) coordinate system. The UTM takes the world, flattens it out, and imposes zones over the earth. This
allows the machine to be tied to a distance measuring system.

The East and West UTM directions are divided into 60 zones, with each zone being 6 degrees. Further,
each zone is divided into a band every 8 degrees in the latitude direction, using the labels C to X. The
letters I and O are not used, to avoid their potential confusion with the numbers one (1) and zero (0). A, B,
Y, and Z represent two polar regions.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

© Danfoss | June 2025 AQ295075513101en-000109 | 15

The image above from Wikimedia Commons
©

 shows UTM grid zones on a projected map of the world.

UTM Zone and Band ASCII Values

67 C 78 N

68 D 80 P

69 E 81 Q

70 F 82 R

71 G 83 S

72 H 84 T

74 J 85 U

75 K 86 V

76 L 87 W

77 M 88 X

For example, if a machine is located at 45°N, 25°E, the UTM is Band T, Zone 35. The band and zone lines
are now 0, so the specific number is positive and to the left or above the band or zone line. In the ACL
blocks for this example, the UTM readings would output the band, zone, as well as 34269000 millimeters
Easting and 4984896000 millimeters Northing. Easting refers to X, which is the distance from the zone
origin to the machine. Northing refers to Y, which is the distance from the band origin to the machine.

Global positioning requires Global Navigation Satellite System (GNSS). It is also recommended to use
Inertial Measurement Unit (IMU) sensors and wheel odometry to get the best location results. IMU
sensors consist of:
• Gyroscopes, which give angular velocity along the x, y, and z-axis.
• Accelerometers, which give linear acceleration data along the x, y, and z-axis.
• Magnetometers or compasses, which give the direction of magnetic north.

GNSS could give errors based on atmospheric delays, orbital position, and issues with the clocks. Services
such as Real Time Kinematics (RTK) and Satellite Based Augmentation Systems (SBAS) can be used to
correct the errors.

Danfoss programs their autonomy function blocks and hardware to work in an East-North-Up (ENU)
coordinate system, which follows the right-hand rule. This means that coordinates start at 0° facing East,
move in a positive direction going North, and move in a negative direction going South. Other
coordinate systems such as North-East-Down (NED) start at 0° facing North and rotate the full 360°
instead of the half circle. NED coordinates must be converted to ENU to work with Danfoss hardware and
software.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

16 | © Danfoss | June 2025 AQ295075513101en-000109

The image above shows the East-North-Up and North-East-Down global coordinate systems. Danfoss
uses ENU.

Turning South in the ENU system, the machine passes through -1°, -2°until reaching -180° when facing
West. Turning North, the machine passes through positive degrees until facing West at 180°. If the
machine kept turning, it would pass through -179° and keep going back in negative degrees until facing
East again.

Currently, autonomy does not factor in altitude (Up) and refers to the global coordinate system as if it is a
2D world.

Local Coordinate System

A local reference frame refers to a coordinate system or frame of reference that is expected to function
over a small region or restricted regional space within the global frame.

The local coordinate system is fixed on Earth and does not move with the machine, referred to as Earth
Centered Earth Fixed (ECEF). It moves from large global coordinates to a smaller surface section of the
Earth. Danfoss's Autonomous Control Library function blocks require local coordinates to match East and
North like the global coordinates, except in special circumstances.

The left image from Wikipedia
©

 shows the local coordinate system uses a section of the Earth's surface
(green) in relation to the larger global coordinates. The right image displays the East-North-Up local
reference frame where positive X is at 0°, positive Y is at 90°, and they are not in relation to the machine.

East (X), North (Y), and Up (Z) are each relative to a local origin. Z must always be up.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

© Danfoss | June 2025 AQ295075513101en-000109 | 17

If working in outdoor environments, the local frame could be the UTM where the origin is chosen by the
developer. For example, the origin could be a building corner, but it should be somewhere within the
operating area of the machine to keep the numbers small.

In the Autonomous Control Library, the Relative_Pos function block is used for local coordinates based
on GNSS.

Additionally, for indoor environments, the x-axis, y-axis, and origin can be chosen wherever is most
convenient, as long as X is 0° and Y is 90°. GNSS is not needed indoors, so the local X and Y coordinates do
not need to align with East at 0° and North at 90°. However, it is recommended to align them in case the
machine goes outside.

Machine Coordinate System

The developer must also define an origin on the machine, known as the machine coordinate system.

The Autonomous Control Library blocks can be programmed in infinite ways, but it is recommended to
place the origin of the machine where there is very little lateral movement when steering. The
Autonomous Control Library refers to the machine's origin as the steering point.

The image above shows recommended areas to place the origin (red dot) based on how the machine
steers while driving. In differential machines, these steering points shift depending on the weight the
machine carries and where that resides, such as a heavy bucket moving forward and back. In articulated
machines, place the steering point in the part of the machine that steers in the direction of driving. For
example, when moving forward, place the steering point on the axle between the front wheels.

Currently, crab steering vehicles require custom code.

In this 3D machine coordinate system, the x-axis points from the rear towards the front of the machine.
The y-axis points from the center towards the left of the machine. The z-axis points from the ground up.

In the images above, the global coordinate system appears as the red lines. The machine coordinate
system is the blue lines. All sensors and offsets should be defined in the machine coordinate system. Each
sensor has an origin and coordinate system, too.

Match all coordinate systems to the machine's coordinate system at the steering point. All types of
machines except for articulated and crab assume positive X goes through the front of the machine at 0°.
Positive Y is to the left of the machine at 90°. Up (height) is positive. Articulated machines include positive
X going in the reverse direction, as well.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

18 | © Danfoss | June 2025 AQ295075513101en-000109

The left image above shows Danfoss machine coordinates move with the machine's origin. The right
image shows articulated machines have two machine coordinates and machine origins. In ACL, the
machine origins are referred to as steering points.

Sensor Coordinate System

Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU), radar, ultrasonics, and cameras
are types of sensors that have their own origin and coordinate system.

The XM100 contains an IMU and therefore requires an origin and coordinate system, as well.

The image shows Danfoss's coordinate frames for a machine, XM100 controller, and LiDAR. Danfoss
recognizes the front of LiDARs as opposite the cable. The LiDAR manufacturing company, Ouster, uses a
different coordinate frame where the cable is the front of the LiDAR.

Danfoss's LiDAR convention regards positive X as opposite the LiDAR connection at 0°, positive Y at 90°,
and Z pointing up to the sky. The LiDAR rotates counter-clockwise and is divided into two 180 degree
semicircles. Most LiDAR sensors do not match Danfoss's convention and need to be adjusted in the
software code.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

© Danfoss | June 2025 AQ295075513101en-000109 | 19

The image above shows Danfoss's LiDAR convention from a side view and top-down view.

Mount the XM100 parallel to the ground, and align the XM100's coordinate frame to the machine's
coordinate frame. This can be done by mounting the XM100 over the machine's coordinate frame at the
machine's origin, or by shifting the XM100's coordinate frame in the software to match the machine's
coordinate frame.

Process the raw sensor coordinate system data and then transform the output of the processed data. Or,
transform the raw data into the correct coordinate system and then process the transformed data.

Yaw, Yaw Rate, and Velocity

Yaw refers to the direction the machine faces, and yaw rate refers to the machine turning.

In a global coordinate system:
• Yaw is zero when the machine faces East.
• Yaw is 90 degrees when the machine faces North.
• Yaw is both 180 and -180 degrees when the machine faces West.
• Yaw is -90 degrees when the machine faces South.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

20 | © Danfoss | June 2025 AQ295075513101en-000109

Yaw rate refers to the machine turning with counter-clockwise yaw rate positive and clockwise yaw rate
negative over a certain amount a time. For example, if a machine turns from 45 degrees to 90 degrees in
5 seconds, the yaw of the machine starts at 45 degrees, the yaw ends at 90 degrees, and the change
between 45 and 90 is the yaw rate in 5 seconds. If a machine's yaw started at -100 degrees and stopped at
-120 degrees in 5 seconds, the yaw rate is -20 deg/5 s = -4 deg/s.

A positive velocity corresponds to the machine moving forward. Therefore, the machine reversing should
have a negative velocity. The yaw angle remains the same in both forward and backward motions.

The image above shows positive velocity when a machine moves forward and negative velocity when
reversing.

Autonomous Library Blocks

Autonomy blocks use positioning in these ways.

The Autonomous Control function block library uses a Position_Filter to provide a method to combine
GNSS data, IMU data, and odometry data. The Position_Filter function block processes the combined
data to produce an improved estimate of the autonomous machine's position and orientation over time.

To produce location estimates, the Position Filter requires sensor data to be formatted to fit standard
conventions. For example, raw GPS data is conventionally reported in latitude and longitude. The data
must be transformed into the Universal Transverse Mercator (UTM) coordinate system.

The Autonomous Control Library supplies the UTM_Conv, Origin and the Relative_Pos function blocks
to format the data properly for the Position Filter to use.

The UTM Conversion blocks (with and without zone selection) are used to convert from latitude and
longitude to the UTM coordinate frame. The Origin function block captures the starting UTM position of
the machine.

The Relative_Pos is stored as X (East being positive) and Y (North being positive) distance from the
Origin in millimeters. This simplifies operations for downstream blocks, so calculations do not need to be
done on raw latitude and longitude values.

The Ackermann_Yaw_Rate function block uses steering and speed sensor data to form a machine-
centric odometry pair. Sensor standard deviation is used in the covariance matrix in the Position Filter.

Navigation

The machine navigates from one point to another after it establishes its position.

Blocks in the Autonomous Control Library use GPS to move, but some also work without GPS indoors.
Machines navigate within their environmental frame of reference to their goal.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

© Danfoss | June 2025 AQ295075513101en-000109 | 21

The figure that follows shows a basic path, which is a series of Bezier curves. A Bezier curve is a parametric
curve used in graphics which uses points to create a smooth, continuous curve by means of a formula.
Referred to as waypoints, these points include coordinate information and sometimes other data.

The Bearing is the angle at which the machine should pass through the waypoint. The curve between
two waypoints is weighted by the length of the Forward Radius of the first point and the Backward
Radius of the second point.

The left image shows a machine following a path by moving gently toward different waypoints. The right
image is explained in the table below.

Item Description

1 Origin

2 Bearing

3 Backward Radius

4 Forward Radius

5 Waypoint

6 East-North-Up (ENU) Notation.
0 (East), 90 (North), 180 (West), -90 (South)

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Background on Autonomous Machines

22 | © Danfoss | June 2025 AQ295075513101en-000109

Autonomous machines require certain features at a system, hardware, and software level in order to run.
Then, Autonomous Control Library (ACL) function blocks can be pieced together in an application.

For an autonomous machine work properly:
• Have electronic steering and propel control in order to autonomously control the machine.
• Know whether the machine operates indoors or outdoors to be able to use GNSS.
• Use features in the environment to establish a location if the machine operates indoors, such as

reflectors, posts, and walls.
• Understand what actions the machine should do autonomously and create machine states in the

application.

Hardware and System Compatibility

Hardware must be compatible with PLUS+1® GUIDE.

Machines need to know their surrounding environment, where they are located, the direction they face,
and whether they are tipped or turning. Use the XM100 controller to get this data, and mount it carefully
or the machine will get inaccurate results about its orientation.

Examples of compatible hardware that connect to the XM100 include MC controllers, joysticks, and
steering valves. Additionally, third party hardware such as Ouster LiDARs, LeiShen LiDARs, and Preco
radars work in PLUS+1® GUIDE.

A Hemisphere GNSS antenna is supported with higher accuracy than the standard XM100 GNSS antenna,
but requires a developer to write custom code to use it.

Software Libraries

Some libraries work well when creating an autonomy application.

The table below shows common libraries of pre-made code to download from the PLUS+1® Update
Center and when to use them.

Go to Select Files Manually > Edit and look through the drop-down folders to select the correct
libraries. Within PLUS+1® GUIDE, libraries appear under the Function or Hardware tabs.

Common Libraries

Category Library Name When to use it

Hardware DM1000 HWD or DM1200
HWD

Used for visualization in conjunction with the XM100.

Hardware XM100 HWD Used for almost every autonomy project.

Hardware Partner Product LeiShen Used with LeiShen LiDAR hardware.

Hardware Partner Product Ouster Used with Ouster LiDAR hardware.

Hardware Partner Product Preco Radars Used with Preco radar hardware.

Software Application Autonomous_Control_Libr
ary_Example_Application

Review this as an example application for an autonomy
project.

Software Function Autonomous Control
Library SW00001310

Used for autonomy projects, which include path
following, object detection, and much more.

Software Function Filters Library Used for filters and ramps.

Software Function Middleware Library Used to get all the fault manager information in one
place.

Software Function Remote Controls Library
70511659

Used to remote control into a machine if using a Danfoss
RCT.

Software Function Speed Sensor Used to measure the machine's ground speed. There are
many different speed sensor libraries.

Software Function SW Template Library Used when wanting the PLUS+1® template, which works
well with function blocks. It is not required to be able to
use function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

© Danfoss | June 2025 AQ295075513101en-000109 | 23

Common Libraries (continued)

Category Library Name When to use it

Software Function Utilities Library Used for miscellaneous items and unit conversions, such
as temperature, speed.

Software Tool PLUS+1® GUIDE Used with any autonomy project containing function
blocks. Recommended to get the latest version.

Software Tool PLUS+1® Service Tool Used with any autonomy project containing function
blocks. Recommended to get the latest version.

After downloading the libraries and connecting the hardware, set up the application in PLUS+1® GUIDE.
Select a new project with XM100 as the hardware. Change the inputs and outputs depending on the
sensors.

Autonomy Software System Template

It is recommended to use the XM100 template in conjunction with the Autonomous Control Library (ACL)
function blocks.

Download the XM100 application template from the PLUS+1® Update Center. Review the API
Specification sheet for more details, which is found within PLUS+1® GUIDE under Project Manager >
HWD > XM100 rather than the Hardware tab.

The ACL function blocks go in the middle Application section of the template. Go into Unit_Config and
change the baud rate to match any sensors used in the system, such as Hemisphere. If no other sensors
are used, then ignore Unit_Config.

Note some autonomy specific items within Inputs and Outputs:
• Change Ethernet, but not USBEthernet, when connecting a LiDAR or another XM device.
• Go into DirAPI to set up interaction with a Linux file system.
• Go into Interlink to create a password to block access to a service tool.
• Optionally disable Service Tool so no one downloads the application while the machine moves.
• Go into GNSS to enable the GPS. Get time synchronized over satellites.
• Set up Accelerometer with the XM100's range and precision. The same range for XM100 occurs no

matter which mode is used.
• Set up how fast the machine responds and the accuracy in Gyroscope. This usually uses mode 4.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

24 | © Danfoss | June 2025 AQ295075513101en-000109

Autonomy Function Block Template

Understand the autonomy function block template in order to use the blocks better.

Autonomy Function Block Template

Number Item

1 The paragraph in the top left corner describes what the function block does and why to use it.

2 Any notes related to the function block appear in a blue box.

3 Click into the Checkpoints page to see what features in the function block are being monitored.
This area includes Internal Signals, which show what happens internally inside the function
block. Monitor these while testing or using the function block to see if any issues occur.

4 Diagnostic signals are used for debugging purposes and contain all signals related to the
function block. This is always on the top right of the page. The Diag bus is the only place to view
the internal signals.

5 Status shows any errors related to parameters that occur in the function block. This is listed on
the top right of the page.

6 Fault shows errors related to inputs. This is listed on the top right of the page.

7 After the block processes the code, outputs appear on the right side. Outputs cannot be
adjusted. If there are too many signals to list, a second page is created that includes the signal
names and descriptions.

8 Code inputs and parameters appear on the left of the page. Parameters within the block can be
adjusted, but inputs come from code entering the block and likely need to be adjusted upstream.
Each signal includes the title, followed by the variable type in parenthesis, a description of the
signal, the low to high span of the signal, and the units of measurement.

9 Warning messages appear in a red box and advise about major issues that could occur.

10 Caution messages appear in a yellow box and include information that should be followed.

Pre-Made Service Tool Screens

Each function block comes with an accompanying service tool screen with the input, parameter, output,
and error signals already assembled for quick and easy viewing.

Pull many function block pre-made service tool screens together to view more of the application.

1. Connect the hardware, such as the XM100, to a computer and turn it on.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

© Danfoss | June 2025 AQ295075513101en-000109 | 25

2. Open PLUS+1® GUIDE.

3. Download the application to the controller by double clicking .lhx.

4. Find the function block whose Service Tool information will be viewed.

• For ACL blocks, select Function > Autonomous Control Library.

• For LiDAR related blocks, select Hardware > Plus+1 Partner Products.

5. Select the drop-down arrow next to any function block to view the Service Screen beneath it.

6. Right click on Service Screen and select Copy to Clipboard.

The image above shows how to copy to the clipboard.

7. Open PLUS+1® Service Tool.

8. Select the drop-down arrows for New System > ECU List.

9. Right click on Parameter Pages and Import from Clipboard.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

26 | © Danfoss | June 2025 AQ295075513101en-000109

10. If this is the first time loading the page, select File > Replace Missing ECU.

The pre-made service tool screen appears. If no values appear in the fields, check that the hardware is
connected and the PLUS+1® GUIDE code compiled.

11. Optionally, if changing the default namespace, modify the service tool pages to match the
namespace. At the top of the Service Tool screen, select Edit > Find/Replace Signal Names.

The image above shows the steps to change namespaces with an example name filled in.

a) Go to the Replace tab.

b) Type which default namespace to replace in the Find What section.

c) Type a new name to replace the default with in the Replace With section.

d) Select Search.

e) Review the New Name list to see if the replacement names work well. If not, replace with a
different name.

f) Select Select All > Change.

g) Select Apply when the pop-up appears to accept the changes. All the times the default name
appears should be changed to the replacement name.

Modify JSON and Update MD5

The following are steps to modify a JSON file and then update the MD5.

A JSON file is associated with Boundary_Recorder, Boundary_Loader, Path_Recorder, and
Path_Loader function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

© Danfoss | June 2025 AQ295075513101en-000109 | 27

Before beginning, record a path or boundary to create a JSON file. Install Notepad++ or a similar
program to modify the JSON file.

1. Open the JSON file.

2. Optionally, modify any of the data. For example, modify the X and Y coordinate points.

a) Delete the original MD5, as shown in the image below.

b) Keep the cursor on the new line. In the image above, that is line 25.

c) Save the file.

3. Open Notepad++. Install this program if not already installed. Similar programs can be used to
modify the JSON file if Notepad++ is not available.

a) Go into Tools > MD5 > Generate from files.

b) Select Choose file to generate MD5.

c) Browse for the modified JSON file.

d) Copy the newly generated MD5 that appears.

e) Save and close the file.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

28 | © Danfoss | June 2025 AQ295075513101en-000109

4. Go back to the JSON file.

a) Paste in the new MD5. The image below shows this on line 25.

b) Save the file.

5. Upload the JSON file to a controller, such as the XM100. See Getting Files from XM100 on page 29.

Getting Files from XM100

Save and access files from the XM100.

1. Open the Service Tool program. The XM100 must be connected to the computer.

2. Select New Service Application or open an existing application.

3. Go to New System > ECU List. Find the XM100 hardware in the list.

4. Select Manage ECU media files, which should open a new window. The application will stop running
in the background.

5. Select Start.

6. Go into Optional Files > P1user. A new folder could be created under there, too.

7. Select the file to save to the computer.

8. Select the Save File icon at the top of the screen to save the file.

9. Pick an area to save the file on the computer to access later.

Other options include:

• Import a file by selecting the Add File icon at the top of the screen. For example, import a JSON
file from another machine recording for some of the Path function blocks.

• Save a modified JSON file by updating the checksum numbers. Modifying a JSON file is not
recommended.

• Delete a file by selecting the trashcan icon.

Restart or Resume Recording After ECU Power Loss

If the ECU loses power, the current boundary or path recording is lost and must be recovered.

To recover, perform one of the following:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

© Danfoss | June 2025 AQ295075513101en-000109 | 29

• Restart the boundary or path.
• Resume the path. This cannot be done with boundary recordings.

1. To restart the boundary or path:

a) Move the machine to the beginning of the boundary or path.

b) Reload the boundary or path the machine was trying to complete.

c) Start following the boundary or path.

2. To resume the path:

a) Reload the path while having Search_Path set to True. This ensures that the entire path is
searched, to find the nearest point to the machine.

b) Ensure the Tracking_Error is less than the Lookahead_Dist to ensure a smooth start.

c) Start following the path.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Application Recommendations

30 | © Danfoss | June 2025 AQ295075513101en-000109

The Autonomous Control Library (ACL) includes blocks of pre-made code to use in applications for
autonomous machines.

An autonomy application needs to satisfy perception, positioning, and navigation concepts for a
machine to work autonomously. ACL includes function blocks that fall into each category.

Follow the diagram to see which ACL function blocks work in an application. The names of the function
blocks appear in the ACL drop-down within PLUS+1® GUIDE with more descriptions. A LiDAR block or
code for a LiDAR is required for the other ACL perception blocks to work.

Begin with the LiDAR block early in the application. Decide whether to use any of the optional pre-
processing blocks, or skip to the function blocks. The flowchart shows which blocks or features come
before others and how they relate to parts of the machine. There are many combinations of the blocks.
Read a block's individual chapter to see more combinations.

The Autonomous Control Library function blocks have been developed to a QM (Quality Management)
level. It is the sole responsibility of the manufacturer to ensure that all performance, safety and warning
requirements of the application are met and complies with relevant machine specific and generic
standards.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

© Danfoss | June 2025 AQ295075513101en-000109 | 31

Common Software Set-Up

A common combination of four function blocks go into an autonomy application. They tell the machine
its location.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

32 | © Danfoss | June 2025 AQ295075513101en-000109

Additionally, view the autonomy application example from the PLUS+1® Update Center to review how
the function blocks could be set up.

The image above shows a typical set-up with the UTM_Conv, Origin, UTM_Conv_Zone, and
Relative_Pos function blocks, which establish the machine's location.

Save Processing Time

For a machine to function as efficiently as possible, configure the code to save processing time.

One way to save processing time is to turn off sections of the code when they are not in use.

In this example, when SV_EnableWallDetect is True, the Wall_Detect function block is enabled using
the output from the LiDAR function block. When it is False, Wall_Detect is disabled, and the O_PtCld

input value is set to -1.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

© Danfoss | June 2025 AQ295075513101en-000109 | 33

Using Namespaces

Namespaces help successfully compile an application that uses the same function block more than once.

Change each function block's namespace by setting its Namespace value to something unique. The
application cannot compile without changing the Namespace value.

The Namespace value adds a unique prefix to each component name.

Also, to use these function blocks' companion Service Tool screens, include the function block's advanced
checkpoint with namespace in the application's compiled .lhx file. Use the function block's Checkpoints

page to include the checkpoint.

Change Namespace Value

To successfully compile an application, change the namespace value for function blocks that are used
more than once in an application.

1 Page Name

2 Namespace

1. Enable Query/Change mode.

• Select Edit > Query/Change.

• Or, press Q.

2. Click on the function block to modify the namespace.
The Edit Page dialog box opens.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

34 | © Danfoss | June 2025 AQ295075513101en-000109

3. In the Namespace field, enter a unique Namespace value.

• Namespace values are case-sensitive.

• To save controller memory, use a short namespace value.

4. Click OK.

5. Repeat these steps to enter unique namespace values for other identical function blocks.

Delete the Old Function Block C Code

If updating to a new function block from an older version of itself, delete the old block from the C Code
first. If this is the first time using a particular function block, skip this task.

1. Open the application that has the old function block in PLUS+1 GUIDE.

2. Within the application, go to Project Manager > C Code > [LibraryName]_AvailableHeader.h.

3. Delete all the old files by right clicking on the .h file, then selecting Delete/Remove.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

© Danfoss | June 2025 AQ295075513101en-000109 | 35

4. Select Delete from the message.

5. Delete the old block from the user interface.

6. Save and close the application. Now, the newest version of the function block can replace it.

Troubleshooting Common Errors

The following table describes common errors that could occur in many of the function blocks and ways
to fix them. Multiple errors can be reported at a time.

Specific errors occur in individual blocks and are listed in each block's troubleshooting section in the user
manual.

View these error numbers on the Service Tool screen for individual function blocks. In PLUS+1® GUIDE,
these signals are on the Checkpoints page in the Internal Signals column.

Common Error Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.
Not enough memory to create internal structs.

This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

Bit 1 Execution time longer than expected or more than 500 ms. If using a LiDAR, reduce the LiDAR resolution or delete other
processing blocks.
Turn the controller off and on, or use less code in the application.

Bit 2 Cannot create background thread. Turn the controller off and on, or use less code in the application.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

How ACL Blocks Work Together

36 | © Danfoss | June 2025 AQ295075513101en-000109

The Ackermann_Yaw_Rate function block provides yaw rate information to the Position_Filter.

The function block converts machine speed and steering angle into a velocity and yaw rate machine-
centric odometry pair. Use this block in place of a gyroscope sensor. The accuracy of this block depends
on the accuracy of the machine sensors. A IMU gyroscope may provide superior accuracy depending on
the application.

The pair consists of the linear velocity (meters/second) and the angular velocity (degrees/second). The
values are defined relative to a coordinate frame where:
• The X-axis points forward along the machine.
• The Y-axis points left along the axle.
• The Z-axis points up.

Sensor variance—the noise observed in sensor data—can be manually set if it is not provided by the
sensor.

The standard deviation of a sensor characterizes the amount of noise in the sensor. This is obtained from
sensor documentation of manually calculating from a log of steady-state sensor data.

Inputs

Inputs to the Ackermann_Yaw_Rate function block are described.

Item Type Range Description [Unit]

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Str_Ang_Std_Dev U32 1-4294967295 The standard deviation of the steering angle.
[0.01 degree]

VelX_Std_Dev U32 1-4294967295 The standard deviation of VelX.
[mm/s]

VelX S32 -25000-25000 The linear velocity of the machine.
[mm/s]

Str_Ang S16 -7000-7000 The angle between the front of the machine and the steered wheel direction.
Negative values are to the right. Positive values are to the left.
[0.01 degree]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Ackermann_Yaw_Rate Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 37

Item Type Range Description [Unit]

Wheelbase U16 300-20000 The distance between the centers of the front and rear wheels.
[mm]

Updated BOOL T/F True when there is new data.
T: New data is ready.
F: New data is not ready.

Outputs

Outputs of the Ackermann_Yaw_Rate function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Yaw_Rate BUS —— This bus contains Yaw Rate and its standard deviation data.

Yaw_Rate S32 -1312080-1312080 The angular velocity of the machine relative to the machine's vertical axis.
[0.01 deg/s]

Yaw_Rate_Std_Dev U32 1-4294967295 The standard deviation of Yaw_Rate.
[0.01 deg/s]

Updated BOOL T/F True when new data is available from the conversion.
T: New data is available.
F: New data is not available.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Ackermann_Yaw_Rate Function Block

38 | © Danfoss | June 2025 AQ295075513101en-000109

The Angle_To_Curv function block converts a steering angle to curvature.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Angle_To_Curv Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 39

Inputs

The following table describes the inputs of the Angle_To_Curv function block.

Item Type Range Description [Unit]

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Str_Ang S16 -9000 to 9000 The angle between the front of the machine and the steered wheel direction.
Negative values are to the right. Positive values are to the left.
[0.01 deg]

Parameters

The following table describes the parameters of the Angle_To_Curv function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routes from the application
through the Para BUS.

Wheelbase U16 300-20000 The distance between the centers of the front and rear wheels.
[mm]
Default: 5000

Outputs

The following table describes outputs for the Angle_To_Curv function block.

Item Type Range Description [Unit]

Diag BUS —— Bus containing diagnostic values for troubleshooting. In addition, all inputs, parameters,
and output signals are contained inside of the bus.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Curvature S32 -2,147,483,648 to
2,147,483,647

Curvature calculated based on the steering angle and wheelbase of the machine.
Negative values are right curves.
Positive values are left curves
[0.01/km]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Angle_To_Curv Function Block

40 | © Danfoss | June 2025 AQ295075513101en-000109

The Boundary_Converter function block allows manual boundary creation, and then passes that
boundary information to a data locker for other code to access.

This block requires a license for A+ Advanced.

Boundary_Converter allows information about a geographic boundary to be entered directly into PLUS
+1® GUIDE, rather than driving a machine around to record boundary information. The latter requires the
Boundary_Recorder function block, and usually an application does not need both types of blocks. Use
Boundary_Converter if very confident about the boundary point locations. It is best with easy shapes,
such as squares.

Boundary_Converter reads the parameters, origin, and information about the boundary. It writes the
boundary information into a data locker when the Convert pulse is given. Geofence_Check and
Boundary_Extract function blocks use the converted information from the data locker.

Before using Boundary_Converter, establish the machine's position and the boundary origin earlier in
the code. Use a new Boundary_Converter function block for each boundary, but use the same origin for
all boundaries. Set the boundary origin in the same UTM zone as the machine's origin or the values will
be very large.

The Origin bus brings origin data into Boundary_Converter. All the boundary points are with respect to
their distance from the origin. NumOfPoints determines the length of the arrays, and then enter X and Y
coordinates manually into the arrays. Ensure that the NumOfPoints corresponds to the number of X and
Y points provided. If there are less points than the NumOfPoints number, an error occurs. If there are
more points than NumOfPoints, then an unexpected boundary occurs using up to the NumOfPoints

points.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 41

The image shows two distinct boundaries. The XY boundary coordinates relate to an origin in the
environment, not necessarily the machine's XY coordinates or origin. For example, one boundary point
reads -45000 mm to the left of the origin along the x-axis, and 20000 mm above the origin along the y-
axis. Straight lines automatically connect between points.

It is recommended to keep the first and last boundary points as the same value when inputting the array.
For example: 100, 200, 250, 100. Use less than 25,000 points in a boundary.

All entered XY coordinates are raw data points Boundary_Converter uses, so they are not filtered by the
position filter. All points entered in the X and Y arrays up to the NumOfPoints value are used in the
boundary unless part of an inner loop. Forced_Point also makes a point part of the boundary. When a
forced point is part of an inner loop, it is deleted and not part of the boundary. However, input and
output arrays may differ if there are inner loops in the array. If an inner loop is needed, use two
Boundary_Converter and Geofence_Check blocks. For example, a pond in a field would need two
boundaries to keep a machine inside the field but outside the pond.

The image above shows inner loops inside the boundary eliminated and external loops kept. Only the
outer boundary shell and forced points remain as the final boundary. Further processing occurred to
eliminate some of the raw points in the right image.

Manually write in an application name, date, and time, which can be anything the developer chooses.
Keep the application character limit less than 255, and timestamp in format YYYY/DD/MM hh:mm.

The standard X deviation is the same for all X values, and the same concept applies to the Y standard
deviation. Smaller numbers give more precise measurements. For example, entering a 5 for X means that
the value could fall within the standard deviation range from 5 points behind and 5 points ahead of the
value, for a total range of 10.

The Closed_Polygon_Threshold is the distance allowed between the first and last point in order for the
boundary shape to be considered closed. For example, entering 500 mm means that if the actual distance
between the first and last boundary points are 501mm, then an error occurs due to the gap between the
first and last points being too large to complete the boundary.

Line_Fit_Tolerance adjusts the boundary. Entering 0 means the line points must match exactly. For
example, if there are 10 coordinate points in a line with 0 Line_Fit_Tolerance, the line would be jagged
to match the coordinates. Entering 1000 mm in Line_Fit_Tolerance gives more tolerance to create the
boundary line and allows points to filter out, aside from forced points. That allows a smoother line, so
higher Line_Fit_Tolerance values give more efficient boundaries.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

42 | © Danfoss | June 2025 AQ295075513101en-000109

The left image shows a boundary with raw data points. The right images show the same boundary with a
small line fit tolerance (top) and larger line fit tolerance (bottom) after the filtration process. The areas
where the loops intersect create an extra boundary point.

Set up the Convert and Reset input pulse signals last. Convert processes boundary data from the inputs
and parameters. If there is a valid boundary, information flows into a boundary type data locker. Incorrect
boundary data creates an error and changes the Boundary_Converter state to idle or paused. If Reset is
True, then another boundary can be converted, but Reset cannot be used until the boundary is finished
or the block would go to an idle state. During a test with the machine, check the
Boundary_Converter_State internal signal to make sure the block is not in a read state, which is 1. If it is
1, then the conversion already completed.

If the boundary points are changed or modified after data went through, then the new information
overwrites the previous boundary information. When the Finished flag turns to 1, the boundary data
locker was written. On a service tool screen, monitor the standard deviation to check that it is within an
allowable tolerance.

The image above shows what occurs in Boundary_Converter regarding reset, convert, and the state of
the block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 43

After setting up Boundary_Converter, use the Boundary_Extract function block to validate the
boundary. Plot the boundary in a separate program, such as Excel, to verify the boundary formed as
expected.

Use less than 25000 points in the boundary. During the boundary conversion, the block may use a
significant amount of controller memory. It is recommended to have the machine standing still during
the boundary conversion.

Application Information

Common function blocks that work with Boundary_Converter are Data_Lockers and Geofence_Check.

1. Scenario one uses Transform_GNSS to determine when a section of the machine crosses a boundary
in Geofence_Check. In this case, the coordinate information moves from the GNSS and yaw sensors
to another part of the machine, such as the machine's origin. Boundary information flows from
Boundary_Converter into Geofence_Check. Further code tells the machine how to react after the
machine's origin crosses the boundary.

2. Scenario two adds more Transform_GNSS after Position_Filter determined the machine's origin.
Two more Transform_GNSS locate two other coordinate points on or around the machine, such as
the front and back of the machine. In parallel, Boundary_Converter gives boundary data to
Geofence_Check, which reads if the two areas of the machine pass over the boundary.

3. Scenario three shows two boundaries, represented by two Boundary_Converter blocks. Each
boundary requires a Boundary_Extract block to display the filtered boundary data on a Service Tool
screen or hardware display, which could differ from the raw boundary data. Position_Filter

determines the machine's position and passes that information into each Geofence_Check.
Geofence_Check(1) determines whether the machine crosses the first boundary, and
Geofence_Check(2) determines whether it crosses the second boundary.

Additionally, place the Boundary_Converter function block:
• With one Data_Lockers block, version 1.12 or later, which can be on any page in the application.
• One or more times in an application if there are multiple boundaries.

Example

The example shows the Boundary_Converter function block generating a manually entered boundary
that Geofence_Check uses. The boundary keeps a machine inside a parking lot.

Before beginning, establish the machine's origin and positioning system. See Common Software Set-Up on
page 32. Determine where the boundary and boundary origin will be in the surrounding environment.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

44 | © Danfoss | June 2025 AQ295075513101en-000109

The image above shows the machine's origin and position information coming from Position_Filter into
Geofence_Check, labeled here as GF_Checking. RCT_Rx refers to joystick buttons programmed to
Boundary_Converter, labeled here as Boundary_Converting. Here, users press the joystick buttons for
the boundary information to reset or flow into Geofence_Check. However, these could be set pulses or
set values. Completed boundary information flows into Geofence_Check.

The image above shows inside the Boundary_Converting page. The Origin and Boundary_Array

pages reflect what is inside Origin and Boundary_Pts buses.

1. Add the Boundary_Converter and Geofence_Check function blocks. Additionally, add a
Data_Lockers block if it does not already exist in the application. It can go on any page.

2. Create a pulse to convert the boundary data to a boundary type data locker. This connects directly to
Convert to convert the data. Here, a joystick labeled B3 sends a pulse.

3. Create a set pulse for Reset on Boundary_Converter. If Reset and Convert are both True in the
same program loop, the program only performs the Reset. During the test, check the
Boundary_Converter_State internal signal to make sure the block is not in a read state, which is 1. If
it is 1, then the conversion already completed.

4. Connect the Origin bus to where the Origin function block data comes from. Here, the origin
coordinates were already known, so the origin parameters are hard coded. If hard coding parameters,
adjust data inside the Origin function block.

The image to the left shows the location origin data used for the boundary. The right image shows
the parking lot location on a map with the origin (red).

5. Go into Boundary_Pts to set the boundary coordinates. Ideally, use easy or known boundary shapes,
like a square. Negative coordinate points reside to the left and below the origin, and positive
coordinate points reside to the right and above the origin. The x-axis runs left to right through the

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 45

origin, and the y-axis runs forward and behind, using the East-North-Up (ENU) convention. Measure
from the origin in the environment to each boundary point.

The image above shows an array of coordinates for the boundary. Here, this is inside the
Boundary_Array page.

a) Enter the number of coordinate points that will be used to make the boundary in NumOfPoints.
Here, there are 46 coordinate points, creating an array index of 0-45.

b) Enter the X coordinates in Point_X. Here, the first X coordinate is -161654, the second X coordinate
-168414. These go into array index 0 and 1. This means the boundary begins 161654 mm to the left
of the origin. Ideally create the same first and last point, so the 46th X coordinate would also be
-161654.

c) Enter the Y coordinates in Point_Y. Here, the first Y coordinate is 215199, the second Y coordinate
213225. These go into array index 0 and 1. This means the boundary begins 215199 mm in front of
the origin. Ideally create the same first and last point, so the 46th Y coordinate would also be
215199.

d) Enter any points required in the boundary into Forced_Point. These are not removed during the
filtering process. By default, all points provided in the array are forced contingent on the
Line_Fit_Tolerance. Points inside the boundary shape are deleted and not included in the final
boundary. Enter 1 in the array index for any coordinate to keep. Here, the fourth boundary point is
forced into the boundary.

6. Fill in the parameters page.

The image above shows parameter data, which is reflected in a new Params page with nonvolatile
components. Nonvolatile components allow changing the values while the application runs. Use
fixed values instead of the nonvolatile components if the application requires it.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

46 | © Danfoss | June 2025 AQ295075513101en-000109

a) Optionally set the application name, date, and time. This manually entered data can represent
anything. Here, these values were skipped.

b) Enter the distance required between the first and last coordinate to consider the boundary shape
closed into Closed_Polygon_Threshold. Here, that is 2000 mm.

c) Enter the standard deviations for X and Y to account for a noisy GNSS. Putting in a 50 for X will
mean that the value could be good within a 50 mm radius. Here, these are 100 mm.

d) Enter the Line_Fit_Tolerance, which is the maximum distance between points and the projected
line during the filtering process to create the boundary. Here, it is 200 mm between points to
include them in the boundary shape. Any points farther away are deleted.

7. Monitor the Finished flag to see that the array was converted into the boundary. Here, the finished
signal is BC_Finished. Optionally, see each function blocks' Pre-Made Service Tool Screens on page 25.
Information automatically flows into a boundary type data locker for Geofence_Check to use.

8. Plot the graph using any plotting tools, such as Excel, of the X and Y coordinates to verify that the
boundary from the raw data points entered is what was expected compared to the filtered boundary
after processing. Look at the Boundary_Extract function block connected to Boundary_Converter

to see the filtered points.

Inputs

The following table describes inputs required for the Boundary_Converter function block.

Array range for X in the ARRAY[X] types should be between 3 to 32,767. X is dynamic.

Item Type Range Description [Unit]

Convert BOOL T/F False to True transition starts the conversion of boundary arrays to a boundary type data
locker.
T: The block state changes back to idle and checks for errors. It checks whether the
boundary is closed, and if so, Boundary_Converter goes from an idle to a read state.
F: If there is a boundary in the boundary type data locker, then the block keeps updating
the data locker. If there is no boundary in the data locker, then the block stays in an idle
state.

If Reset and Convert are both True in the same program loop, the program only performs
the Reset.

Reset BOOL T/F False to True transition determines whether to clear the data locker that has been written.
Reset will not take effect during the read state.
T: The block state changes back to idle, and no more data goes into a boundary type data
locker.
F: If there is a boundary in the boundary type data locker, then the block keeps updating
the data locker. If there is no boundary in the data locker, then the block stays in an idle
state.

Origin BUS —— BUS containing UTM values of the boundary's origin. The data flows automatically to the
boundary type data locker. The items in this bus are placeholders and do not do anything.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32 0-10¹⁰ The UTM Northing (Y) value of the origin.
This uses two U32 types, equivalent to a U64.
[mm]

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.
[mm]

UtmY_Lower U32 0x00000000-0x54
0BE400

The 32 least significant bits of UtmY as stored in a U64 value.
This is the range of the full U64 bit number.
[mm]

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 47

Item Type Range Description [Unit]

Boundary_Pts BUS —— A bus that contains ways to define the boundary.

NumOfPoints U16 3-32767 The desired number of points to be written into the data locker.
This takes affect when Convert transitions from False to True.

Point_X ARRAY[X]S32 -2147483648-2147
483647

Array of boundary coordinates along the x-axis with respect to the origin. Values to the left
and below the origin are negative. Values to the right and above the origin are positive.
Manually enter X point values. The boundary will include them, with the exception of
inner loops.
[mm]

Point_Y ARRAY[X]S32 -2147483648-2147
483647

Array of boundary coordinates along the y-axis with respect to the origin. Values to the left
and below the origin are negative. Values to the right and above the origin are positive.
Manually enter Y point values. The boundary will include them, with the exception of
inner loops.
[mm]

Forced_Point ARRAY[X]BO
OL

0-1 Forces a point to be included on the boundary. Forced boundary points are in the line
fitting algorithm, which determines the final boundary shape. Points inside the polygon
boundary shape are deleted and not included in the line fitting algorithm.
0: Does not force the boundary to include specific points.
1: Forces the boundary point in a specific location.

Parameters

The following table describes parameters for the Boundary_Converter function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Metadata BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.
Default: 'Application Name'

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
This manually entered timestamp can represent anything necessary for the application.
Leave blank if unneeded.
Default: 1999/01/01 00:00

Std_Dev_X U32 1-4294967295 The highest standard deviation of boundary points along the x-axis. Smaller numbers
indicate a more precise boundary.
Default: 1
[mm]

Std_Dev_Y U32 1-4294967295 The highest standard deviation of boundary points along the y-axis. Smaller numbers
indicate a more precise boundary.
Default: 1
[mm]

Closed_Polygon_Thre
shold

U16 50-65535 The maximum distance allowed between the first and last points to consider the
boundary shape closed. Boundaries with larger distance values are incomplete.
This value uses raw data points rather than filtered points from post-processing.
Default: 1000
[mm]

Line_Fit_Tolerance U16 0-1000 Maximum distance between points to create a computationally more efficient boundary.
If the distance between the point and the fitted line is smaller than the tolerance value,
the point is discarded.
Default: 0
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

48 | © Danfoss | June 2025 AQ295075513101en-000109

Outputs

The following table describes outputs required for the Boundary_Converter function block. The data
could go into the Boundary_Extract and Geofence_Check function blocks.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Boundary S8 -1-99 The ID of the boundary type data locker.

Finished BOOL T/F Indicates if the boundary has finished loading into the data locker.
T: Boundary finished loading.
F: Boundary has not finished loading.

Internal Signals

The following table describes what is happening internally in the Boundary_Converter function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Boundary_Converter_

Err_Specific

U16 0x0000 to 0x003F Indicates when a specific error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Boundary_Converter Troubleshooting on page 49.

Boundary_Converter_

Err_Common

U16 0x0000 to 0x0007 Indicates when a generic error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Troubleshooting Common Errors on page 36.

Boundary_Converter_

State

U8 0-3 The state of the Boundary_Converter function block.
0: Idle, waiting for the convert signal.
1: Read the input and write it to the boundary type data locker. Filtering boundary data
occurs during this post-processing state.
2: Increase the Boundary data locker sequence ID.
3: Error state, waiting for the reset command. The Boundary output data locker ID will be
-1.

Num_Points U16 0-65535 Number of points in the boundary after filtering data. Look at this value to see if too many
points are excluded and no data is processing.

Progress U16 0-10000 Indicates the progress converting the boundary in the data locker. Look here to see if
Boundary_Converter stopped processing data.
[0.01%]

Boundary_Converter Troubleshooting

The following table describes errors that could occur in the Boundary_Converter function block and
ways to fix them.

View the Boundary_Converter_Err_Specific signal on the Service Tool screen to see if any error
numbers appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals

column.

See Troubleshooting Common Errors on page 36 to fix errors that appear in many function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 49

If the PLUS+1® application does not compile, times out, or stalls, it may be due to using large constant
arrays of points. Try disabling the Checkpoints page for Boundary_Converter.

These errors can be visually represented in the bit, hexadecimal, and decimal versions in the service tool.

Boundary_Converter_Err_Specific Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 Input array sizes are not equal in length. Array size mismatch is
checked before receiving the Convert signal.

Check that array inputs have the same length.

Bit 1 The signal NumOfPoints is not equal to the input arrays, creating
the wrong number of points. This value size is checked before
receiving the Convert signal.

Verify the size of input arrays are equal to the expected
NumOfPoints value.

Bit 2 Less than three boundary points exist after post-processing. A
boundary needs more than three points to be created.

Modify the Line_Fitting parameter and check the boundary
points.

Bit 3 The distance between the first and last boundary points is larger
than the Closed_Polygon_Threshold value.

Increase the Closed_Polygon_Threshold value or shorten the
distance between the first and last points.

Bit 4 There is no outer boundary loop. Check the boundary points.

Bit 5 The data locker cannot be updated. Use the Convert signal again. Restart the controller. Check that
there is enough memory.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Converter Function Block

50 | © Danfoss | June 2025 AQ295075513101en-000109

The Boundary_Extract function block reads boundary information from a data locker and displays up to
50 points of data about the boundary.

This block requires a license for A+ Advanced.

Boundary_Extract shows data from a data locker, which could be visually seen on a service tool screen.
Use the pre-made service tool screen, or pull the signals into a service tool individually. The data
extracted could be used in other blocks or parts of the application. Additionally, create a display of the
information on a piece of hardware such as the DM1000.

After pulling data from the Boundary data locker ID, Boundary_Extract focuses on more specific point
data. Choose a point in the array by writing the array number in Point_Index. For example, entering 0
shows information related to the first 50 points, with index values 0-49. To view more than 50 points, add
extra Boundary_Extract function blocks to the application and increase Point_Index to 50 for the
second instance to see values 50-99, 100 for the third instance to see values 100-149, and so on. Outputs
include origin, position, and point information gathered from earlier blocks.

The Updated flag stays true as long as there is valid data in the data locker. It does not change if new
data is available. It only goes false if invalid or no data comes, indicated by -1 in the boundary type data
locker.

Place Boundary_Extract after gathering boundary information, which could be from
Boundary_Recorder, Boundary_Converter or Boundary_Loader function blocks. Confirm a
Data_Lockers block exists somewhere in the application.

Out of the boundary blocks, Boundary_Extract helps but is not required to create a boundary.

Application Information

Common function blocks that work with Boundary_Extract are Boundary_Converter,
Boundary_Loader, Boundary_Recorder, and Data_Lockers.

The Boundary_Extract function block visually displays data about the boundary on a service tool screen
or a hardware display, such as the DM1000. It is helpful but not necessary in an application. Some basic
boundary function block combinations include:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Extract Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 51

These scenarios assume code earlier in the application establishes a machine's position. One
Data_Lockers block is required in all applications and does not need to connect to anything.

1. Scenario one shows Boundary_Recorder recording a boundary, then writing it to a JSON file.
Additionally, Boundary_Extract(1) displays information from Boundary_Recorder onto a Service
Tool screen or other hardware display. Boundary_Loader reads the boundary from the JSON file and
transmits it to a Service Tool screen or a hardware display using the Boundary_Extract(2) function
block. Lastly, Geofence_Check determines whether a machine crosses the boundary.

2. Scenario two shows Boundary_Recorder recording two separate boundaries and writing each one
to a JSON file. Then, Boundary_Loader(1) reads the first boundary from a JSON file and transmits it
to a Service Tool screen or a hardware display using the Boundary_Extract(1) function block.
Boundary_Loader(2) and Boundary_Extract(2) do the same with the second boundary.
Geofence_Check(1) determines whether the machine crosses the first boundary, and
Geofence_Check(2) determines whether it crosses the second boundary.

3. Scenario three shows two boundaries, represented by two Boundary_Converter blocks. Each
boundary requires a Boundary_Extract block to display the filtered boundary data on a Service Tool
screen or hardware display, which could differ from the raw boundary data. Position_Filter

determines the machine's position and passes that information into each Geofence_Check.
Geofence_Check(1) determines whether the machine crosses the first boundary, and
Geofence_Check(2) determines whether it crosses the second boundary.

Additionally, place the Boundary_Extract function block:
• With one Data_Lockers block, version 1.12 or later, which can be on any page in the application.
• After any boundary function block to visually see what information those blocks are putting into a

data locker. Many Boundary_Extract blocks could exist in an application. If multiple
Boundary_Loader and Boundary_Converter function blocks exist, place Boundary_Extract after
each one to see what is in each block.

• Do not place Boundary_Extract at the start of the boundary block flow because there will not be any
data to see. It is not used after Geofence_Check.

Example

The Boundary_Extract function block is in examples with other boundary blocks.

See Example on page 66 with the Boundary_Recorder, Boundary_Loader, and Geofence_Check

function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Extract Function Block

52 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The following table describes inputs required for the Boundary_Extract function block. This data comes
from a data locker with boundary information from the Boundary_Loader, Boundary_Recorder, or
Geofence_Check function blocks.

Item Type Range Description [Unit]

Boundary S8 -1-99 The ID of the boundary type data locker.

Parameters

The following table describes parameters required for the Boundary_Extract function block.

Item Type Range Description [Unit]

Point_Index U16 0-65535 The array index of the first point read from the boundary. For example, to start the array
index at point 15, enter 15 here.
Add more Boundary_Extract function blocks into the application if there are more than
50 points to view, and set Point_Index to 50 or larger. The first boundary point will be in
array value 0.
Default: 0

Outputs

The following table describes outputs required for the Boundary_Extract function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Origin BUS —— Stores the boundary's origin in the form of the UTM coordinate system.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32 0-10¹⁰ The UTM Northing (Y) value of the origin.
This uses two U32 types, equivalent to a U64.
[mm]

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.
[mm]

UtmY_Lower U32 0x00000000-0x54
0BE400

The 32 least significant bits of UtmY as stored in a U64 value.
The range represents the full U64 bit number.
[mm]

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

Metadata BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
This manually entered date and time information comes from Boundary_Recorder or
Boundary_Converter function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Extract Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 53

Item Type Range Description [Unit]

Boundary_Pts BUS —— A bus that contains ways to define the boundary.

Updated BOOL T/F Indicates if new boundary data is extracted from the Boundary input.
T: New boundary data is extracted. This stays True even if the Boundary data changes, as
long as it is still valid.
F: No new boundary data available.

NumOfPoints U16 0-50 The number of valid points in the output array. Add more Boundary_Extract function
blocks into the application if there are more than 50 points to view, and set Point_Index

to 50 or larger. The first boundary point will be in array value 0.

Point_X ARRAY[50]S3
2

-2147483648-2147
483647

Array of boundary coordinates along the x-axis with respect to the origin. Values to the left
and below the origin are negative. Values to the right and above the origin are positive.
[mm]

Point_Y ARRAY[50]S3
2

-2147483648-2147
483647

Array of boundary coordinates along the y-axis with respect to the origin. Values to the left
and below the origin are negative. Values to the right and above the origin are positive.
[mm]

Forced_Point ARRAY[50]BO
OL

0-1 Indicates if a point is forced in a boundary.
0: Point is not forced.
1: Point is forced.

Std_Dev_X U32 1-4294967295 The highest standard deviation of boundary points along the x-axis. Smaller numbers
indicate a more precise boundary.
[mm]

Std_Dev_Y U32 1-4294967295 The highest standard deviation of boundary points along the y-axis. Smaller numbers
indicate a more precise boundary.
[mm]

Closed_Polygon_Thre
shold

U16 0-65535 The maximum distance allowed between the first and last points to consider the
boundary shape closed. Boundaries with larger distance values are incomplete.
[mm]

Internal Signals

The following table describes what is happening internally in the Boundary_Extract function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Boundary_Extract_Err

_Specific

U16 0x0000 to 0x0003 Indicates when a specific error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Boundary_Extract Troubleshooting on page 54.

Total_Num_Points U16 0-65535 Total number of boundary points stored inside of the data locker after the post-filtering
process. Use this value to determine where to start the Point_Index parameter.

Boundary_Extract Troubleshooting

The following table describes errors that could occur in the Boundary_Extract function block and ways
to fix them. View the Boundary_Extract_Err_Specific signal on the Service Tool screen to see if any error
numbers appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals

column.

These errors can be visually represented in the bit, hexadecimal, and decimal versions in the service tool.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Extract Function Block

54 | © Danfoss | June 2025 AQ295075513101en-000109

Boundary_Extract_Err_Specific Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 The string in the metadata is longer than expected and invalid.
The Data_Lockers block does not have enough room for the
metadata.

Confirm each metadata string is less than 255 characters.

Bit 1 The Point_Index value is greater or equal in length to the
boundary, making the index invalid.

Enter a valid Point_Index signal within the index range, which
should be smaller than the desired boundary length.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Extract Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 55

The Boundary_Loader function block reads a JSON file, which contains information about a boundary
around a geographic area. This boundary is then uploaded into the Data_Lockers block for other blocks
to access.

This block requires a license for A+ Advanced. It also requires hardware compatible with the media file
system, such as the XM100. The minimum HWD version must be greater than 3.21.

Boundary_Loader requires a JSON file either produced by the Boundary_Recorder function block or
user written. It reads the data from a JSON file, checks that the data is not corrupt, and then loads it to
Data_Lockers for other blocks in the application to use.

The JSON file contains information about the filtered boundary recorded by Boundary_Recorder, rather
than any raw data points gathered in its initial boundary creation. Or, the JSON file could contain raw
data points written by a user if Boundary_Recorder was not used. When using Boundary_Recorder, the
JSON's filtered boundary includes processing the raw data points, smoothing the raw boundary, and
closing the boundary. If a JSON file needs modification, make any changes to it and save a new MD5.
Then, use the new JSON file in Boundary_Loader. See Modify JSON and Update MD5 on page 27.

If the JSON is modified, change the parameters in Boundary_Loader from the default. These parameters
include Closed_Polygon_Threshold, which ensures the boundary is closed with the filtered boundary
points from the modified JSON. Measure the distance between the first and last point in the boundary to
ensure it is smaller than the Closed_Polygon_Threshold. Use Boundary_Extract to verify that the
boundary closed.

Line_Fit_Tolerance further smooths the boundary by using the filtered points if the tolerance is a
smaller value than in Boundary_Recorder. Smoothing the boundary here could be done without
modifying the JSON file.

Boundary_Loader outputs the data contained in the JSON file into a boundary type data locker. Outputs
include any errors that occurred, origin used during boundary creation, and if the boundary has loaded
into Data_Lockers on the Finished output. Review errors on the Checkpoints page or service tool
screen.

If a machine needs to move inside one boundary but outside of another boundary, create multiple
boundaries. For example, this could be staying inside a large boundary like a field, but staying outside of
a smaller boundary like a pond within the field. Each boundary needs a Boundary_Loader function block
to upload the boundary data to its own data locker within the Data_Lockers block.

After uploading boundary data, the Geofence_Check function block uses the information to determine if
a machine passes through the boundary. Each boundary needs a Geofence_Check.

Use the Boundary_Extract function block to verify that something was loaded properly into the data
locker. If there is an incorrect boundary, then the boundary will not load successfully. Use less than 25000
points in the boundary.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

56 | © Danfoss | June 2025 AQ295075513101en-000109

Application Information

Common function blocks that work with Boundary_Loader are Boundary_Extract,
Boundary_Recorder, Data_Lockers, and Geofence_Check.

The Boundary_Loader function block uploads the JSON file with boundary data gathered from the
Boundary_Recorder function block into a Data_Lockers block, that could then be consumed by other
blocks. One Data_Lockers block is required for all applications but does not connect to anything.
Information about the position of the machine is required earlier in the application. Some basic boundary
function block combinations are the following:

1. Scenario one shows Boundary_Loader reading the boundary from a JSON file that had been created
a previous time. Boundary_Loader loads the JSON file information to a data locker, and then
Geofence_Check uses the boundary data to detect whether the machine crosses the boundary.
Additionally, the boundary data is transmitted to a Service Tool screen or a hardware display using
Boundary_Extract.

2. Scenario two shows Boundary_Recorder recording the boundary to a JSON file, which is then stored
on the controller. Boundary_Loader loads the JSON file information to a data locker for
Geofence_Check to use. The Transform_GNSS function blocks move coordinate information to two
different parts of the machine. Each Geofence_Check function block checks when that part of the
machine crosses a boundary.

3. Scenario three shows Boundary_Recorder recording two separate boundaries and writing each one
to a JSON file. Then, Boundary_Loader(1) reads the first boundary from a JSON file and transmits it
to a Service Tool screen or a hardware display using the Boundary_Extract(1) function block.
Boundary_Loader(2) and Boundary_Extract(2) do the same with the second boundary.
Geofence_Check(1) determines whether the machine crosses the first boundary, and
Geofence_Check(2) determines whether it crosses the second boundary.

Additionally, place the Boundary_Loader function block:
• With one Data_Lockers block, version 1.12 or later, which can be on any page in the application.
• After Boundary_Recorder if it is required to create the JSON file. If a JSON file exists from a different

application, Boundary_Recorder is not required.
• After position information is obtained, such as after a Position_Filter function block.
• Multiple times in an application if there are many boundaries. There should be a Boundary_Loader

block for each boundary, and a machine needs a new boundary for each region it stays inside or
outside.

Example

The example shows loading two pre-recorded JSON files of two boundaries. A small machine needs to
stay outside of one boundary around a pond, but stay inside a larger field boundary surrounding the
pond.

Set up GNSS and positioning code earlier in the application, which could use the Position Filter function
block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 57

The example assumes code exists earlier in the application to establish a machine's position and origin.

1. Add two Boundary_Loader blocks. Each Boundary_Loader block corresponds to a boundary, which
affects where a machine can go. Here, the machine stays inside of the field with
Boundary_Loader_Field and outside of the pond with Boundary_Loader_Pond.

2. Add two Geofence_Check function blocks. Geofence_Check_Field determines when a machine
crosses the field boundary, and Geofence_Check_Pond determines when a machine crosses the
pond boundary.

3. Additionally, add a Data_Lockers block if it does not already exist in the application. It can go on any
page, and there should only be one Data_Lockers in an application.

4. Look up the JSON file names in the XM100. See Getting Files from XM100 on page 29. Here, the JSON
file names are Field.json and Pond.json located in path '/media/p1user/' .

5. Connect one JSON's file path to the signal Filename. Here, the entire file name and path is '/media/
p1user/Field.json' for the field boundary. Boundary_Recorder generates the JSON file, which is
stored on a local file directory such as the XM100.

6. Connect the other JSON's file path to the signal Filename in the second Boundary_Loader. Here, the
file name and path '/media/p1user/Pond.json' refers to the pond boundary.

7. Create pulse signals to Read the JSON files for both boundaries. This pulse triggers
Boundary_Loader to read the file and write the information to a data locker. The blocks load the
information they read into a data locker automatically if the Data_Lockers block exists somewhere in
the application.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

58 | © Danfoss | June 2025 AQ295075513101en-000109

8. Set up the parameters in each Boundary_Loader.

a) Enter the distance required to close the field boundary in Closed_Polygon_Threshold. This
applies to the filtered boundary points from the JSON file. Here, that is 3000 mm, which means if
the first and last filtered boundary point are within 3000 mm, the boundary closes. If the distance
between those points are larger, then an error occurs.

b) Enter the value to further smooth the field boundary, if necessary, in Line_Fit_Tolerance. Here,
this was left at 0.

c) Enter the distance required to close the pond boundary in Closed_Polygon_Threshold. Here, that
is 1000 mm because it is smaller than the large field.

d) Enter the value to further smooth the pond boundary, if necessary, in Line_Fit_Tolerance. Here,
this was left at 0.

9. Optionally, connect the Origin bus to code further downstream for both Boundary_Loader blocks.
This origin is obtained from the JSON file.

10. Optionally, connect the Finished output from each Boundary_Loader to any downstream code.
Monitor the service tool screen to see that the boundaries loaded, which should show 1 if successful.

11. Connect each Boundary output into a Boundary_Extract function block to display the filtered
boundary data more clearly on a service tool screen. Here, the field boundary connects into
Boundary_Extract_Field and the pond boundary connects to Boundary_Extract_Pond.

12. Connect each Boundary output into a Geofence_Check. Here, the field boundary connects to
Geofence_Check_Field. The pond boundary connects to Geofence_Check_Pond.

13. Connect the machine position information into the Pos input on each Geofence_Check. This verifies
where the machine is with respect to the boundary.

14. Create a set value for Enable on each Geofence_Check. Setting Enable to True activates the block.

15. Move the machine around the boundary to validate the State output coming from the
Geofence_Check blocks. Monitor the service tool screens to see that the machine state is not 0 or
255, which means the block is deactivated or an error occurred.

16. Optionally, see the Pre-Made Service Tool Screens on page 25 for all function blocks for comprehensive
results. Or, create a display of the information on a piece of hardware such as the DM1000.

17. Create code downstream to have the machine react when it crosses the boundaries. Here, the
machine would need to stay inside the field but outside the pond boundary.

18. Log and plot the outputs of the Geofence_Check blocks, the boundaries of the field and pond, and
the machine position onto a separate graph, such as in Excel. Verify the information is as expected.

Inputs

The following table describes inputs required for the Boundary_Loader function block. The JSON file
data comes from the Boundary_Recorder block or could be written manually.

Item Type Range Description [Unit]

Filename STRING[255] —— Name of the JSON file, which is made manually or from Boundary_Recorder.
The default name is '/media/p1user/Recorded_Boundary.json'. The file must be within
'media/p1user'.

Read BOOL T/F False to True transition starts reading the JSON file and writing the information into a
boundary type data locker.
T: Read the file.
F: Do not read the file.
For optimal performance, have Read pulse false after reading the JSON file.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 59

Parameters

The following table describes the parameters for the Boundary_Loader function block.

Item Type Range Description [Unit]

Closed_Polygon_Thre
shold

U16 50-65535 The maximum distance allowed between the first and last points to consider the
boundary shape closed. Boundaries with larger distance values are incomplete.
For more accurate position information, this value uses filtered points from post-
processing rather than raw data.
Default: 2000
[mm]

Line_Fit_Tolerance U16 0-1000 Maximum distance between points to create a computationally more efficient boundary.
If the distance between the point and the fitted line is smaller than the tolerance value,
the point is discarded.
Default: 0
[mm]

Outputs

The following table describes outputs for the Boundary_Loader function block. The data could go into
Boundary_Extract or Geofence_Check function blocks.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Origin BUS —— BUS containing UTM values of the boundary's origin, which are read from the JSON file.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32 0-10¹⁰ The UTM Northing (Y) value of the origin.
This uses two U32 types, equivalent to a U64.

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 0x00000000-0x54
0BE400

The 32 least significant bits of UtmY as stored in a U64 value.
This is the range of the full U64 bit number.

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

Updated BOOL T/F Indicates when new data is being stored for the origin.
T: New data is available for the origin.
F: No new data is available.

Finished BOOL T/F Indicates if the boundary has finished loading into the data locker.
Finished flag will always be 0 if Read transitions from False to True, there is an active
Status, Boundary_Loader_Err_Specific or Boundary_Loader_Err_Common code.
T: Boundary finished loading.
F: Boundary has not finished loading.

Boundary S8 -1-99 The ID of the boundary type data locker.

Internal Signals

The following table describes what is happening internally in the Boundary_Loader function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

60 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Boundary_Loader_Err

_Specific

U16 0x0000 to 0x0FFF Indicates when a specific error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Boundary_Loader Troubleshooting on page 61.

Boundary_Loader_Err

_Common

U16 0x0000 to 0x0007 Indicates when a generic error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Troubleshooting Common Errors on page 36.

Progress U16 0-10000 Indicates the progress loading the boundary in the data locker. Look here to see if
Boundary_Loader has stopped processing data.
[0.01%]

Boundary_Loader Troubleshooting

The following table describes errors that could occur in the Boundary_Loader function block and ways
to fix them.

View the Boundary_Loader_Err_Specific signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

See Troubleshooting Common Errors on page 36 to fix errors that appear in many function blocks.

These errors can be visually represented in the bit, hexadecimal, and decimal versions in the service tool.

Boundary_Loader_Err_Specific Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 The JSON file is not available. The file could have the wrong name
or not exist.

Verify the JSON file name is correct. Check that the block looks for
it in the correct location, such as the XM100 or a USB connected to
the XM100.

Bit 1 There may not be enough memory available to read the JSON file,
or the file is too large. This could happen if the file was manually
edited.

Take information out of the file.

Bit 2 The JSON file could not be read because it is empty or incomplete. Verify the file has not been manually modified, and it contains the
recorded boundary instead of wrong information.

Bit 3 The Cyclical Redundancy Check (CRC) failed. The JSON file is
corrupted or manually modified.

Make sure the JSON file has not been modified. If creating a
manual JSON file, create a valid 32-bit MD5 check for the file.

Bit 4 Wrong JSON data or incorrect JSON file. Verify the JSON file is valid, not manually modified, and contains
the recorded boundary.

Bit 5 There are less than three boundary points in the JSON file. There
needs to be at least three points to create a boundary.

Check the information stored in the JSON file contains at least
three points and re-record the boundary.

Bit 6 Wrong or missing metadata. This happens after manually creating
or modifying a JSON file.

Check that all the metadata fields are present in the JSON file.

Bit 7 The number of points expected is different than the number
recorded. This happens after manually modifying the file.

Re-record the boundary.

Bit 8 Standard deviations for X and Y are missing in the JSON file. Check that all the standard deviation fields are present in the JSON
file.

Bit 9 The distance between the starting and ending boundary point is
bigger than Closed_Polygon_Threshold.

Increase the Closed_Polygon_Threshold value or make the
boundary smaller than the Closed_Polygon_Threshold.

Bit 10 Errors occurred during the post-filtering process while
determining the boundary points.

Make sure there are less than 65,535 points in the boundary.
Review the boundary points if they are manually written.

Bit 11 Cannot update the output data locker. Reset the hardware controller.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 61

The Boundary_Recorder function block records a virtual boundary around a geographic region, and
then stores the boundary data in a JSON file and Data_Lockers. Other code determines if a machine
should stay inside or outside of the boundary.

This block requires a license for A+ Advanced. It also requires hardware compatible with the media file
system, such as the XM100. The minimum HWD version must be greater than 3.21.

Set up origin location information earlier in the code before creating the boundary. Additionally, set up
machine dimension information earlier in the code. This helps determine when parts of the machine
cross the boundary later on. Only one Boundary_Recorder is allowed in an application for it to compile.

Boundary_Recorder records a virtual boundary, which can be any sort of closed shape. It plots a series of
points which contain the boundary's global coordinates, XY position, and optionally other data. Then,
this information goes to a JSON file to be used immediately or later.

The image shows creating two distinct boundaries. The XY boundary coordinates relate to an origin in
the environment, not necessarily the machine's XY coordinates or origin. For example, one boundary
point reads -45000 mm to the left of the origin along the x-axis, and 20000 mm above the origin along
the y-axis. Straight lines automatically connect between the points.

Create boundaries around areas a machine should stay inside or outside, for example staying inside of a
field or outside of water. Boundaries can be any polygon shape, but create multiple boundaries if a
machine needs to stay in one area but outside of another. Inner loops within the boundary are
eliminated, so only the outer shell stays to form the boundary.

There is the ability to include certain areas into the boundary recording unless they are part of an inner
loop, so they are not entirely filtered out, which is set in Force_Point. Optionally, more information can
link to the points during the boundary recording. These include the application name, JSON file name,
date, and time.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

62 | © Danfoss | June 2025 AQ295075513101en-000109

The image above shows inner loops inside the boundary eliminated and external loops kept. Only the
forced points and outer boundary shell remain as the final boundary. Further processing occurred to
eliminate some of the raw points in the right image.

Boundary_Recorder includes options to pause, reset, and record the virtual boundary. Pausing stops
gathering coordinate point data for the boundary. Transitioning Pause to True creates a new point, and
transitioning to False creates another new point. Reset deletes the recorded boundary. Record must
cycle from True to False to True afterward to start re-recording the boundary. It is not necessary to end
the boundary exactly where it started. If the first and last points are close, or at least smaller than the
Polygon_Closure_Threshold, then the boundary automatically closes.

The image above shows a machine recording a boundary when Record is True. The machine pauses, and
the coordinate points do not factor into the boundary until it stops pausing. The boundary closes
between the pauses and end of the recording if the coordinate points are withing the
Polygon_Closure_Threshold value. The finished boundary saves to JSON and CSV files.

Additionally, the distance between each point, and whether points are too far away from the boundary
line, factor into the filtration process. Distance thresholds for these are set in Min_Movement and
Line_Fit_Tolerance. After recording, a filtering process creates a smooth, closed boundary.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 63

The left image shows a boundary with raw data points. The right images show the same boundary with a
small line fit tolerance (top) and larger line fit tolerance (bottom) after the filtration process. The areas
where the loops intersect create an extra boundary point.

Raw data from the boundary recording saves in a CSV file but not the JSON. The processed boundary data
goes into the data locker and JSON file. That information is accessed by Boundary_Loader to go into
Geofence_Check.

The Boundary_Recorder function block only supports Linux-based controllers. The recording stops and
deletes the raw data file if there are less than 100 megabytes of memory left on the controller. Use less
than 25000 points in the boundary, and keep the machine still while the block processes the recording. If
the XM100 loses power, the boundary is lost. See Restart or Resume Recording After ECU Power Loss on
page 29.

If a JSON file needs modification, make any changes to it and save a new MD5. Then, use the new JSON
file in Boundary_Loader. See Modify JSON and Update MD5 on page 27.

Some items to note:
• When setting up an application, ensure the Origin function block is set up to the correct location of

the boundary and check the GNSS. If an origin is reused from other applications, it may have
unexpected coordinates.

• Use the Boundary_Extract function block to validate the boundary.
• It is recommended to use the Position_Filter function block to estimate the position of the machine.
• Check the values from Position_Filter, as well as the other sensors, during and after recording a

boundary. Take into account wheel slippage and noise. If there is too much wheel slippage, do not
use wheel odometry in the position filter.

• Monitor the standard deviation to check that it is within an allowable tolerance.
• After a recording completes, go into the JSON file and plot out the boundary in another program to

check that the expected boundary appears.
• Ensure the boundary is correct in terms of size, forced points, and pauses.

Application Information

Common function blocks that work with Boundary_Recorder are Boundary_Extract,
Boundary_Loader, Data_Lockers, and Geofence_Check.

Boundary_Recorder records boundary data by manually driving a machine along a boundary to record,
rather than entering data into the function block. Information about the position of the machine is
required earlier in the application. Some basic boundary function block combinations include:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

64 | © Danfoss | June 2025 AQ295075513101en-000109

These flows assume the machine position was established earlier in the code.

1. Scenario one shows Boundary_Recorder producing a JSON file without other boundary blocks to
use it. Do this to save and copy a boundary to another machine to use later. Boundary information
also saves in boundary type data locker. One Data_Lockers block is required in all applications and
does not need to connect to anything. Information also flows directly into Geofence_Check to use
immediately as the boundary records. Shutting the controller off loses the boundary data.

2. Scenario two shows Boundary_Recorder recording a boundary, then writing it to a JSON file.
Additionally, Boundary_Extract(1) displays information from Boundary_Recorder onto a Service
Tool screen or other hardware display. Boundary_Loader reads the boundary from the JSON file and
transmits it to a Service Tool screen or a hardware display using the Boundary_Extract(2) function
block. Lastly, Geofence_Check determines whether a machine crosses the boundary.

3. Scenario three shows Boundary_Recorder recording two separate boundaries and writing each one
to a JSON file. Then, Boundary_Loader(1) reads the first boundary from a JSON file and transmits it
to a Service Tool screen or a hardware display using the Boundary_Extract(1) function block.
Boundary_Loader(2) and Boundary_Extract(2) do the same with the second boundary.
Geofence_Check(1) determines whether the machine crosses the first boundary, and
Geofence_Check(2) determines whether it crosses the second boundary.

Additionally, place the Boundary_Recorder function block:
• Only once in each application, even though many boundaries can be recorded from the one block.
• With one Data_Lockers block, version 1.12 or later, which can be on any page in the application.
• After position information is obtained, such as after a Position_Filter function block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 65

Example

The example shows the Boundary_Recorder function block recording a virtual boundary, known as a
geofence, around a parking lot. Boundary_Recorder produces a JSON file of the boundary information
which Boundary_Loader loads into a data locker. The boundary keeps a machine inside the parking lot.

The image above shows code related to recording and using a boundary. The origin information of the
boundary goes into Boundary_Recorder, situated in this example inside the Boundary_Recording

page. RCT_Rx refers to joystick buttons programmed to Boundary_Recorder. Here, users press the
joystick buttons for the boundary information to reset or flow into Geofence_Check, situated inside the
GF_Checking page. However, these could be set pulses or set values. Completed boundary information
flows into Boundary_Loader and then Geofence_Check. The machine's origin and position information
comes from Position_Filter into Geofence_Check.

The image above shows inside the Boundary_Recording page.

1. Add the Boundary_Recorder, Boundary_Loader, and Geofence_Check function blocks.
Additionally, add a Data_Lockers block if it does not already exist in the application. It can go on any
page.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

66 | © Danfoss | June 2025 AQ295075513101en-000109

2. Connect the Origin bus to where the Origin function block data comes from.

The image to the left shows the location origin data used for the boundary, which is hard-coded in
the Origin block in this example. The right image shows the parking lot location on a map with the
origin (red).

3. Create code to pause the recording, such as connecting a set value. Here, a joystick button pauses the
recording when pressed. The pause ensures no data records while Pause is True.

4. Set Record to True for the entire recording. The machine must be manually driven while the
recording occurs. In this example, a joystick button is tied to the Record signal.

5. Create a set pulse for Reset. Reset deletes a recorded boundary. Record must cycle from True to
False to True afterward to start re-recording the boundary.

6. Create a set pulse for Force_Point. A forced point means a particular boundary coordinate point will
be included in the final processed boundary. If a point is not forced, that coordinate could be filtered
out of the boundary. Here, Force_Point is linked to a joystick button which forced the point when
pressed.

7. Connect Pos to the machine's origin and position information, recommended from the
Position_Filter function block.

8. Fill in the parameters page.

The image above shows parameter data, which is reflected in a new Params page with nonvolatile
components. Nonvolatile components allow changing the values while the application runs. Use
fixed values instead of the nonvolatile components if the application requires it.

a) Optionally set the application name, date, and time. This manually entered data can represent
anything. Here, these values were skipped.

b) Enter the Line_Fit_Tolerance, which is the maximum distance between raw points and the
projected line during the filtering process to create the boundary. Here, it is 500 mm between
points to include them in the boundary shape. Any points farther away are deleted.

c) Enter the distance required between the first and last raw point to consider the boundary shape
closed into Polygon_Closure_Threshold. This includes the distance between pauses. Here, that is
1000 mm.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 67

d) Enter the Min_Movement, which is the minimum distance a machine must move in order to
record the next raw boundary point. Here, that is 500, so a point records after every 500 mm.
Larger distances mean less points connect.

e) Determine whether to save the raw CSV file in Save_Raw_Data. If a reset occurs, the raw data is
saved if this is set to True but deletes if it is False. The JSON is also not saved if a reset occurs.

f) Fill out the JSON file name. Here, that is NV_BR_JSON_Filename.

9. Connect the Finished and Boundary buses to Boundary_Loader. Boundary data automatically
flows into a boundary type data locker via a JSON file, which Boundary_Loader uses. To change
anything in the JSON file, see Modify JSON and Update MD5 on page 27.

10. Optionally, connect the Boundary_Extract function block to the Boundary output to visually see the
data inside Boundary_Recorder. The first 50 boundary points appear by default in point index 0-49.

11. Fill out Boundary_Loader information. This is situated inside the Boundary_Loading page.

The image above shows inside the Boundary_Loading page.

a) Create a pulse to read the filename that was set in Boundary_Recorder. If the filename is not
present, an error occurs. Here, the file name is NV_BL_JSON_Filename.

b) Send a pulse to the Read input to read the particular JSON from the data locker. Here, the joystick
button labeled B6 sends a pulse when pressed.

c) Enter the distance required between the first and last point to consider the boundary shape closed
into Closed_Polygon_Threshold. These points refer to the filtered points after reading the JSON
and not the raw data points in the original recording. Here, that is 2000 mm.

d) Enter the Line_Fit_Tolerance, which is the maximum distance between points and the projected
line during the filtering process to create the boundary. Here, it is 500 mm between points to
include them in the boundary shape. Any points farther away are deleted.

e) Connect the Finished and Boundary buses to Geofence_Check. Boundary data automatically
flows into a boundary type data locker, which Geofence_Check uses.

f) Optionally, connect the Boundary_Extract function block to the Boundary output to visually see
the data inside Boundary_Loader. The first 50 boundary points appear by default in point index
0-49.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

68 | © Danfoss | June 2025 AQ295075513101en-000109

The image above displays a Service Tool screen which used two Boundary_Extract blocks, one after
Boundary_Recorder and the other after Boundary_Loader. Loader information displays on the left,
with recording information on the right. Standard deviation of 195 is a combination of the position
filter and GNSS, and means X could be 195 mm to the left or right in a circle radius of the origin. Here,
the space between the first and last point was too large to close the boundary, as represented in
Closed_Polygon_Threshold, so the parameter was increased.

12. Fill out Geofence_Check.

The image above shows Geofence_Check inside of the GF_Checking page.

a) Set Enable to True. Here, pressing a joystick button labeled S3_North enables Geofence_Check

to check if a machine is inside or outside of the boundary.

b) Connect machine position information into the Pos bus to give the machine's X, Y, and yaw
information. This usually comes from Position_Filter.

c) Connect the boundary locker from Boundary_Loader. Geofence_Check automatically pulls
information about the boundary from the data locker.

13. Drive the machine around the boundary area to create the boundary.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 69

14. Check the service tool screen to see that the correct boundary loads. Do not move the machine while
the boundary loads.

The image above shows a service tool screen with Geofence_Check data.

15. Plot the graph using any plotting tools, such as Excel, of the X and Y coordinates to verify that the
expected boundary appears.

Inputs

The following table describes inputs required for the Boundary_Recorder function block. Most of this
data comes from the Position_Filter block and optionally a wheel odometer.

Item Type Range Description [Unit]

Pause BOOL T/F Determines whether to pause the recording. This only applies while recording the raw
data. Transition between True to False or False to True will record the point and forces it.
T: Pauses the recording. It resumes when transitioning from True to False.
F: Records.

Record BOOL T/F Triggers the recording and saves the recorded data into a data locker. When the Record

signal goes from True to False, it stops the recording and starts saving the data to a data
locker.
T: Records.
F: Waits to record or saves the boundary data. Changing to false in the middle of the
recording stops the recording but processes the data already gathered.

Reset BOOL T/F False to True transition determines whether to stop the recording. When Save_Raw_Data

is True, the recording stops after writing the recorded boundary data to a data locker and
deletes the data.
T: Stops the recording.
F: Signal has no effect on the block functionality.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

70 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Force_Point BOOL T/F Forces a point to be included on the boundary. Forced boundary points are in the line
fitting algorithm, which determines the final boundary shape. Points inside the polygon
boundary shape are deleted and not included in the line fitting algorithm.
T: Forces the boundary point in a specific location. The point information is stored in the
final post-processed boundary.
F: Does not force the boundary to include specific points.

Pos BUS —— Position and coordinate signals coming from the Position_Filter function block.

X S32 -2147483648-2147
483647

Current X position of the machine location.
[mm]

Y S32 -2147483648-2147
483647

Current Y position of the machine location.
[mm]

Std_Dev_X U32 1-4294967295 The highest standard deviation of boundary points along the x-axis. Smaller numbers
indicate a more precise boundary.
[mm]

Std_Dev_Y U32 1-4294967295 The highest standard deviation of boundary points along the y-axis. Smaller numbers
indicate a more precise boundary.
[mm]

Parameters

The following table describes parameters for the Boundary_Recorder function block. All these
parameters can be hard-coded. However, the Origin bus could pull data from the Origin function block
directly.

Item Type Range Description [Unit]

Origin BUS —— Stores the machine's origin in the form of the UTM coordinate system.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
Default: 0x20EBC948
[mm]

UtmY U32 0-10¹⁰ The UTM Northing (Y) value of the origin.
This uses two U32 types, equivalent to a U64.
Default: 0x1540BE400
[mm]

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.
[mm]

UtmY_Lower U32 0x00000000-0x54
0BE400

The 32 least significant bits of UtmY as stored in a U64 value.
The range represents the full U64 bit number.
[mm]

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.
Default: 85

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.
Default: 32

Updated BOOL T/F Indicates when new data is being stored for the origin.
T: New data is available for the origin.
F: No new data is available.

Fitting BUS —— BUS containing additional information about creating the boundary.

Min_Movement U16 50 -
Polygon_Closure

_Threshold

Minimum distance the machine must move in order to record the next boundary point.
Default: 500
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 71

Item Type Range Description [Unit]

Polygon_Closure_Thr
eshold

U16 50 - 65535 The maximum distance allowed between the first and last points to consider the
boundary shape closed. This also includes the distance between pauses. Boundaries with
larger distance values are incomplete.
This value uses raw data points rather than filtered points from post-processing.
Default: 500
[mm]

Line_Fit_Tolerance U16 0-1000 Maximum distance between points to create a computationally more efficient boundary.
If the distance between the point and the fitted line is smaller than the tolerance value,
the point is discarded.
Default: 300
[mm]

Save_Raw_Data BOOL T/F Determines whether to save the boundary data. If a reset occurs, data is deleted.
T: Save the data in raw_data.csv.
F: Delete the raw data.

Metadata BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.
Default: 'Application Name'

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
This manually entered timestamp can represent anything necessary for the application.
Leave blank if unneeded.
Default: '1999/01/01 00:00'

Filename STRING[255] —— Name of the output JSON file. Rename the file, if desired.
The default name is '/media/p1user/Recorded_Boundary.json'. The file must be within
'media/p1user'.

Outputs

The following table describes outputs for the Boundary_Recorder function block. The data could go into
Boundary_Extract or Geofence_Check function blocks, or the data could sit in a JSON file for later. See
Getting Files from XM100 on page 29.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Boundary S8 -1-99 The ID of the boundary type data locker.

Finished BOOL T/F Indicates if the boundary has finished loading into the data locker.
T: Boundary finished loading.
F: Boundary has not finished loading.

Internal Signals

The following table describes what is happening internally in the Boundary_Recorder function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

72 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Boundary_Recorder_

Err_Specific

U16 0x0000 to 0x07FF Indicates when a specific error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Boundary_Recorder Troubleshooting on page 73.

Boundary_Recorder_

Err_Common

U16 0x0000 to 0x0007 Indicates when a generic error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Troubleshooting Common Errors on page 36.

Progress U16 0-10000 Indicates the progress of processing the raw recorded boundary data into a final boundary
with filtered data. Look at this value to see if Boundary_Recorder has stopped processing
data.
[0.01%]

Loop_Closure_Dist U32 0-4294967295 Distance from the current machine position to the initial point where the recording
started.
[mm]

Prev_Point_Dist U32 0-4294967295 Distance from the current machine position to the last recorded point.
[mm]

Closed_Polygon_Chec

k

BOOL T/F Indicates whether the boundary shape can be closed.
T: Boundary can be closed.
F: Boundary cannot be closed.

Num_Raw_Points U32 0-4294967295 Number of raw data points stored in the raw_data.csv file. See Getting Files from XM100 on
page 29 to access this data. If Save_Raw_Data is True, these data points are before the
boundary filtering process occurs.
Look at this value to see how many points were excluded from the filtered boundary or to
see if there is an option of getting data from other points.

Num_Points U16 3-65535 Number of points in the boundary after filtering data. Look at this value to see if too many
points are excluded and no data is processing.

Boundary_Recorder Troubleshooting

The following table describes errors that could occur in the Boundary_Recorder function block and
ways to fix them.

View the Boundary_Recorder_Err_Specific signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

See Troubleshooting Common Errors on page 36 to fix errors that appear in many function blocks.

These errors can be visually represented in the bit, hexadecimal, and decimal versions in the service tool.

Boundary_Recorder_Err_Specific Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 Error writing the raw CSV file. The file cannot be opened or the
new data cannot append to it. The file could be read-only or not
available.

Verify that the CSV file '/media/p1user/raw_data_boundary.csv' is
in the correct location and not read-only.

Bit 1 There is less than 100 megabytes of memory left on the controller. Delete files on the controller's hard drive, '/media/p1user/
raw_data_boundary.csv'.

Bit 2 The distance between the True to False transition for a pause is
greater than the Polygon_Closure_Threshold. Or, the
Loop_Closure_Threshold is greater than the
Polygon_Closure_Threshold.

Restart the recording.

Bit 3 The Num_Raw_Points value is less than three. There must be at
least three points to create a boundary.

Restart the recording.

Bit 4 The program cannot open the raw data file for post-processing or
the file does not exist. When the CSV file is not generated after
boundary recording, this error appears.

Re-record the boundary.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 73

Boundary_Recorder_Err_Specific Descriptions and Fixes (continued)

Number Description How to Fix

Bit 5 The number of lines in the CSV file differs from the number of lines
in the Boundary_Recorder function block. The data in the CSV
does not match the JSON file.

Re-record the boundary.

Bit 6 Cannot open the JSON file '/media/p1user/
Recorded_Boundary.json' for writing.

Check the JSON file location is correct or accessible, or re-record
the boundary.

Bit 7 Cannot write some parts of the data to the JSON file. The JSON file
might be read-only.

Check that the JSON file is not read-only, or re-record the
boundary.

Bit 8 The JSON file size is larger than allowed and runs out of memory.
There cannot be more than 1 million characters.

Re-record the boundary with less data points, and make sure the
metadata has smaller strings.

Bit 9 The number of points exceeds the limit of 65,535 points. Re-record the boundary with less points, or create multiple
boundaries.

Bit 10 Cannot update the output data locker. Reset the hardware controller.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Boundary_Recorder Function Block

74 | © Danfoss | June 2025 AQ295075513101en-000109

The Curv_To_Angle function block converts curvature to steering angle.

To get the steering angle from the Curv_To_Angle function block you provide a curvature input in
0.01/km and a wheelbase parameter in mm.

Inputs

The following table describes inputs for the Curv_To_Angle function block.

Item Type Range Description [Unit]

Curvature S32 -2,147,483,648 to
2,147,483,647

Curvature calculated based on the steering angle and wheelbase of the machine.
Negative values are right curves.
Positive values are left curves
[0.01/km]

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The following table describes parameters for the Curv_To_Angle function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para BUS.

Wheelbase U16 300 to 20000 The distance between the centers of the front and rear wheels.
Default: 5000
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Curv_To_Angle Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 75

Outputs

The following table describes outputs for the Curv_To_Angle function block.

Item Type Range Description [Unit]

Diag BUS —— Bus containing diagnostic data for the function block.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range.
0x8100: Invalid ECU.

Fault U16 —— Reports the fault status of the function block.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Str_Angle S16 -9000 to 9000 The angle between the front of the machine and the steered wheel direction.
Negative values are right curves.
Positive values are left curves
[0.01 deg]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Curv_To_Angle Function Block

76 | © Danfoss | June 2025 AQ295075513101en-000109

The Data_Lockers block stores data for other function blocks to use. This enables large amounts of data
to pass between function blocks in an efficient way.

The Data_Lockers block is used in applications with data such as point clouds or paths, so some
Autonomous Control Library (ACL) function blocks may not require it. The data automatically travels from
a function block producing data to Data_Lockers and then down to a second function block that
consumes the data.

The Data_Lockers block:
• Does not connect to any buses or wires. Nothing should connect into the small x by the block.
• Does not have inputs, parameters, or outputs.
• Stands alone on a page.
• Can be placed on any page in an application.
• Does not need to be on the same page as other function blocks that use it.
• Should only be placed once in an application. There will never be two or more Data_Lockers blocks.
• Does not come with a preassembed service tool screen. It has one checkpoint to drag into a service

tool, which is always true and cannot change.

Data_Lockers includes 100 locker IDs ranging from 0-99. The code for an invalid locker ID is -1, which
could be used to turn off Data_Lockers to save processing power. Each ID is a unique number that
references a data stream of a certain type. Different data streams cannot mix, such as a point cloud locker
and path locker.

ACL function blocks use specific signal names for locker IDs to indicate their type and where they
connect. For example, U_PtCld connects to other U_PtCld. Just connect one signal to the other, and data
flows into the correct data locker automatically. There are no other actions, buses, or wires that need to
connect into Data_Lockers. However, connecting incorrect signals together that use a data locker will
compile in the code but not function. For example, connecting a function block with the signal
Bez_Path_In to U_PtCld.

Execution order matters with function blocks that use or generate Data_Lockers. Any function blocks
that require information from others to work need to be placed so information flows from a block earlier
in the application to a data locker, and blocks later in the application can use that data. Place blocks that
generate data in the parent page or top left corner of a page to give information first, and blocks which
use data beneath it or to the right.

The most up-to-date Data_Lockers version works with all function blocks in an autonomous application.
This block uses a different version than ACL and therefore does not match, but any updated ACL blocks
likely require the latest Data_Lockers version. A compilation error appears for incompatible versions,
and the error message says the required version. To replace an old Data_Lockers block with a new one,
delete the older block's C code. See Delete the Old Function Block C Code on page 35.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Data_Lockers Helper Block

© Danfoss | June 2025 AQ295075513101en-000109 | 77

If issues occur, exit PLUS+1® GUIDE, reboot the computer, and compile again. Use XM or DM devices.

Example

The Data_Lockers function block is in several examples. It stands alone on the page without connecting
to other blocks.

See Example on page 157 with the Path_Recorder function block.

See Example on page 128 with the Path_Converter function block.

See Example - One Path on page 150 with one Path_Loader function block.

See Example - Multiple Paths on page 151 with multiple Path_Loader function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Data_Lockers Helper Block

78 | © Danfoss | June 2025 AQ295075513101en-000109

The Edge_Detect function block analyzes the ordered point cloud data. The block parses the data to look
for a continuous surface followed by an edge, which appears as a discontinuity in the LiDAR scan.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about the Ouster LiDAR scanner and block.

The discontinuity in the LiDAR scan can be used to find any generic edge of a smooth feature, such as a
wall or garage door. It can parse the scan from either direction, limit the range of the scan and the size of
the feature to find more specific features.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Edge_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 79

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

The following table describes the limitations of the function block.

Item Description

Parse Direction The parsing direction is determined by the values chosen for the Start_Angle and Stop_Angle. If
the Start_Angle is less than the Stop_Angle, the parsing occurs from right to left. If the
Start_Angle is greater than the Stop_Angle, the parsing occurs from left to right.

Falling Edge The algorithm finds a falling edge in the selected ring from the LiDAR scan, where the points are
farther away or disappear. This block is not designed to find an interior corner where the points
appear closer.

Inputs

Inputs to the Edge_Detect function block are described.

Item Type Range Description

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The Edge_Detect function block's operating characteristics are set by Para bus input signals.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Start_Angle S16 -18000-18000 Specifies which beam of the LiDAR scan to use to start parsing for an edge.
Default: 0
[0.01 deg]

Stop_Angle S16 -18000-18000 Specifies which beam of the LiDAR scan to use to stop parsing for an edge.
Default: 18000
[0.01 deg]

Min_Feature_Size U16 1-60000 The minimum required size of an object to be identified as a continuous surface before
and after an edge. This filters out noise from the sensor or ignores very small objects.
Default: 1000
[mm]

Ring U16 0-65535 The ring parameter selects the horizontal row from the 3D LiDAR scan to detect the edge.
For a 2D LiDAR, set the ring parameter to zero.
Default: 0

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Edge_Detect Function Block

80 | © Danfoss | June 2025 AQ295075513101en-000109

Outputs

Outputs of the Edge_Detect function block are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Edge_Index U32 0-4294967295 Specifies the index of the point in the row of point cloud that was marked as an edge.

Edge_Detect_Err U8 0-4 Indicates errors occurred in the function block operation.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Point cloud is unordered.

Processing_Time U32 0-4294967295 The time taken to process the input point cloud data.
[µs]

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Reports the fault status of the function block.
Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Edge BUS —— The Edge bus contains the updated information about the location of the detected edge.

Updated BOOL T/F Indicates new information is available from the block.
T: Edge detected.
F: Edge not detected.

Distance U32 0-4294967295 Distance from the edge in radial coordinates.
[mm]

Angle S16 -18000-18000 Angle to the edge in radial coordinates.
[0.01 deg]

Edge_X S32 -100000-100000 X coordinate of the edge relative to the scanner.
[mm]

Edge_Y S32 -100000-100000 Y coordinate of the edge relative to the scanner.
[mm]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Edge_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 81

The Extract_Ring function block is used to extract a ring of information from the latest LiDAR point cloud
object found inside a data locker.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about the Ouster LiDAR scanner and block.

Read about LiDARs and point clouds in Perception on page 13.

The parameter Ring refers to the ring row from the ground up, starting at zero. For example, a ring input
of zero means data is displayed for the first row from the ground. A ring input of 15 means data is
displayed for the 16th row.

A value of zero displays on the service tool screen if the point is not valid. For example, this occurs when
the LiDAR supplies the intensity signal and it is zero, and the X, Y, and Z values are zero because the point
cloud was not transformed.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

Inputs

Inputs to the Extract_Ring function block are described.

Item Type Range Description [Unit]

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Extract_Ring Function Block

82 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

Parameters to the Extract_Ring function block are described.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Ring U16 0 - 127 Valid ring number to extract data from point cloud.
Default: 0

Outputs

Outputs of the Extract_Ring are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the sensor.

Extract_Ring_Err U8 0-2 Indicates that an error occurred in the block functionality.
0: No error.
1: Input point cloud is unordered.
2. The ring parameter is invalid or not available in the point cloud data.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Scan BUS —— Outputs the points in the point cloud of a LiDAR with their positions and intensities.

Updated BOOL —— True if new data was processed.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Num_Points U16 0-2048 Number of points in the row.

X (Array[2048]S
32)

-2147483648-2147
483647

X coordinate of point in Cartesian coordinates.
[mm]

Y (Array[2048]S
32)

-2147483648-2147
483647

Y coordinate of point in Cartesian coordinates.
[mm]

Z (Array[2048]S
32)

-2147483648-2147
483647

Z coordinate of point in Cartesian coordinates.
[mm]

I (Array[2048
]U16)

0-10000 Intensity values of points.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Extract_Ring Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 83

The Geofence_Check function block monitors a machine's position relative to a virtual boundary or
geofence.

This block requires a license for A+ Advanced. It also requires hardware compatible with the media file
system, such as the XM100. The minimum HWD version must be greater than 3.21.

Geofence_Check uses GNSS, IMU, and odometry data so the machine knows its location. This requires
extra hardware, such as antennas, and their accompanying code. Align the machine's coordinate frame
and the GNSS antenna's coordinate frame for the distance and angle information to function accurately.

A geofence is a virtual fence or perimeter corresponding to a physical location. When an object enters
this area, something happens. The Geofence_Check function block:
• Determines whether the machine is inside or outside of the pre-defined geofence.
• Calculates the distance to the geofence, aiding in navigation planning.
• Calculates the angle to the closest point on the boundary, which can be used for steering

adjustments.
• Allows flexible and complex boundary shapes, defined by a series of points on a map.
• Ensures responsive real-time operation by using threading without blocking the main program.

However, Geofence_Check only works in 2D and does not use height information. It does not provide
path planning, integrate directly with GPS or other positioning systems, and does not predict future
machine positions or provide warnings about approaching the geofence boundary. If needing any of
these features, use the outputs of Geofence_Check to customize the application.

A geofence needs at least three coordinate points on a map to form a closed boundary. These create a
polygon shape, and the points cannot be in a straight line. Geofences vary in size: small to as large as the
whole earth. Because Geofence_Check uses a GNSS signal, use it with outdoor applications.

Geofence_Check comes after a series of blocks to establish the geofence boundary, and then
Geofence_Check checks the machine position with respect to the boundary.

When Geofence_Check is enabled, the block pulls information from the data locker about the boundary
using the Boundary input. The machine's X and Y coordinate information comes from the
Position_Filter function block earlier in the code, which is normally measuring the machine's origin or
steering point. This uses GNSS to locate the machine on a world map at all times, so the code detects
when the machine crosses the boundary. Use Transform_GNSS to transfer the coordinates to corners of
the machine for Geofence_Check to monitor when those areas cross the boundary. Information about
which direction the machine faces is estimated by the Yaw input, which also comes through
Position_Filter.

The Updated signal indicates if all the information comes into Geofence_Check without issues and
processes successfully. Geofence_Check outputs include the machine state, which says what the

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Geofence_Check Function Block

84 | © Danfoss | June 2025 AQ295075513101en-000109

machine is doing. On the service tool screen, these states indicate whether the machine is inside or
outside the boundary by displaying a 1 or 2. It also says if Geofence_Check is disabled so no boundary
readings occur, displayed by 0. If the service tool screen displays 255, then the machine is in an invalid or
safe state.

Other outputs include the machine's position in relation to the geofence, as well as the geofence
boundary standard deviation. Fence_Distance reflects the distance from the machine's steering point
along the x-axis through the front of the machine to the fence or boundary. The closest distance from the
machine's steering point to the boundary is indicated by Closest_Pt_Distance. This shifts direction to
wherever the closest part of the boundary is located in relation to the steering point. The closest point
angle, Closest_Pt_Angle, is the angle between Closest_Pt_Distance and Fence_Distance. This angle
also changes based on the machine's location. If checking multiple areas of the machine, these outputs
would work from the locations where the coordinates were transferred with Transform_GNSS, rather
than the steering point.

The image above shows the outputs of Geofence_Check.

Additionally, the boundary calculations take the largest X and Y standard deviations among all the points
and uses those in the boundary calculations. For example, if the X standard deviation among three points
is 10 mm, 20 mm, and 25 mm, then the final X standard deviation used to calculate all three outputs is 25
mm. This 25 mm appears in both an inner boundary and an outer boundary around the actual boundary.
Large standard deviations could indicate a larger margin for error. Smaller standard deviations indicate a
more precise boundary and therefore more precise outputs.

The images above show a machine driving over the virtual boundary. The left image displays data related
to Fence_Distance. When the machine is less than 1500 mm from the boundary in the machine's x

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Geofence_Check Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 85

direction, the path color turns yellow. The right image shows the same path but measuring
Closest_Pt_Distance. When the machine's steering point is less than 1500 mm from the closest point on
the boundary, the path turns yellow. The red path indicates the machine is outside of the boundary.
These plots use the outputs of Geofence_Check, which could be used by downstream code to control
the machine's reaction in relation to the boundary.

Some items to note:
• Monitor the State output for positioning while running the geofence checker. Check where the

machine is with respect to the boundary and monitor for errors. The State turns to 255 on the service
tool screen if errors occur. It could mean the data locker ID or boundary has changed.

• Monitor the machine's position with respect to the boundary in real time to ensure the outputs are as
expected. Also, monitor the distance and angle outputs to ensure that the machine is physically
inside or outside the boundary when it indicates it is on the service tool screen. Verify the expected
Closest_Pt_Distance correlates between the service tool screen and the physical machine.

• It is recommended to use the Position_Filter function block to estimate the position of the machine.
• Use the Boundary_Extract function block to validate the boundary.
• Monitor the standard deviation to check that it is within an allowable tolerance.
• Plot the outputs of Geofence_Check and the machine's path in another tool, such as Excel.

Application Information

Common function blocks that work with Geofence_Check are Boundary_Converter,
Boundary_Extract, Boundary_Loader, Boundary_Recorder, Data_Lockers, and Transform_GNSS.

Geofence_Check comes at the end of several function blocks which obtain a boundary. It detects if a
machine crosses that boundary, and code downstream determines the machine reaction.

Review how Geofence_Check works in sequences with:
• Transform_GNSS in Application Information on page 216.
• Boundary_Converter in Application Information on page 44.
• Boundary_Recorder in Application Information on page 64.
• Boundary_Loader in Application Information on page 57.

Additionally, place the Geofence_Check function block:
• With one Data_Lockers block, version 1.12 or later, which can be on any page in the application.
• After position information is obtained, such as after a Position_Filter function block.
• After a boundary is obtained from either Boundary_Converter, Boundary_Loader, or

Boundary_Recorder.
• Multiple times in an application if there are many boundaries. There should be a Geofence_Check

block for each boundary, and a machine needs a new boundary for each region it stays inside or
outside.

• Multiple times in an application if there are many areas on the machine to check. Use a
Geofence_Check and Transform_GNSS block for monitored each area.

Example

The Geofence_Check function block is in examples with other boundary blocks.
• See the Example on page 66 with the Boundary_Recorder and Boundary_Loader function blocks.
• See the Example on page 57 with two Boundary_Loader function blocks.
• See the Example on page 44 with the Boundary_Converter function block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Geofence_Check Function Block

86 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The following table describes inputs required for the Geofence_Check function block.

Item Type Range Description [Unit]

Enable BOOL T/F Determines whether to trigger Geofence_Check.
T: Geofence_Check is used.
F: Geofence_Check is ignored.

Boundary S8 -1-99 The ID of the boundary type data locker.

Pos BUS —— Position and coordinate signals coming from the Position_Filter function block.

X S32 -2147483648-2147
483647

Current X position of the machine location.
[mm]

Y S32 -2147483648-2147
483647

Current Y position of the machine location.
[mm]

Yaw S32 -72000-72000 The angle used to describe the machine's heading using the ENU (East-North-Up)
reference frame.
[0.01 degree]

Outputs

The following table describes outputs required for the Geofence_Check function block. This block
comes last in the boundary block series.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Updated BOOL T/F Indicates whether new data processed.
T: Data processed, and Enable is True.
F: No data processed, or Enable is False.

State U8 0-255 The current machine state with respect to the boundary.
0: Geofence_Check is off, and Enable is False.
1: The machine is inside the boundary, and Enable is True.
2: The machine is outside the boundary, and Enable is True.
255: The machine is in an invalid or safe state, and Enable is True.

Closest_Pt_Distance U32 0-4294967295 The shortest distance from the machine's steering point to the closest boundary point.
This point could be located in any direction in relation to the machine.
[mm]

Fence_Distance U32 0-4294967295 The distance from the machine's steering point through the front of the machine to the
boundary. If the machine is not facing the boundary, this value is 4294967295.
[mm]

Closest_Pt_Angle S32 -2147483648-2147
483647

The angle of the machine's Yaw to the closest boundary point. This angle could be located
in any direction in relation to the machine.
[0.01 degree]

Std_Dev_X U32 0-4294967295 The highest standard deviation of boundary points along the x-axis. Smaller numbers
indicate a more precise boundary.
[mm]

Std_Dev_Y U32 0-4294967295 The highest standard deviation of boundary points along the y-axis. Smaller numbers
indicate a more precise boundary.
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Geofence_Check Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 87

Internal Signals

The following table describes what is happening internally in the Geofence_Check function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Geofence_Check_Err_

Specific

U16 0x0000 to 0x003F Indicates when a specific error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Geofence_Check Troubleshooting on page 88.

Geofence_Check_Err_

Common

U16 0x0000 to 0x0007 Indicates when a generic error occurred in the block functionality. Bitwise code where
multiple errors can be reported at the same time.
See Troubleshooting Common Errors on page 36.

Processing_Time U32 0-4294967295 The amount of time taken for Geofence_Check to receive data and process it.
High processing time increases the latency for downstream function blocks, and machines
react slower as the processing time increases.
[µs]

Geofence_Check Troubleshooting

The following table describes errors that could occur in the Geofence_Check function block, as well as
ways to fix them.

View the Geofence_Check_Err_Specific signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

See Troubleshooting Common Errors on page 36 to fix errors that appear in many function blocks.

These errors can be visually represented in the bit, hexadecimal, and decimal versions in the service tool.

Geofence_Check_Err_Specific Descriptions and Fixes

Number Description How to Fix

0x0000 No errors. Nothing needs to change.

Bit 0 The data locker is not available. The data locker may be an
incorrect type or not have enough space.

Check the C code to see that the size of the data buffer is large
enough and a boundary type data locker is used.

Bit 1 The Locker ID changed unexpectedly. The data in the data locker
is invalid and cannot be read.

Verify the data locker ID is valid and not -1. Verify the input
boundary has not become corrupt. Use the Boundary_Extract
function block to check that the input boundary is correct.

Bit 2 Unique identifier validation failed, indicating potential data
corruption or unauthorized modification.

Check that the sequence ID is increasing.

Bit 3 The checksum is invalid. There may be a change in the boundary
data.

Use the Boundary_Extract function block to review the boundary
data. To change the boundary, turn the Enable signal to False,
load the boundary data, and turn Enable to True.

Bit 4 Data is not coming from a boundary function block earlier in the
application code.

Check the data locker and code from previous boundary blocks.

Bit 5 Data stored in the data locker returns a null pointer. Check the code to see if something is not being set to a null
pointer.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Geofence_Check Function Block

88 | © Danfoss | June 2025 AQ295075513101en-000109

The LiDAR_Filter function block eliminates unnecessary data from a LiDAR hardware scan, thereby
saving processing power and gathering more focused data.

This block requires a license for A+ Advanced.

LiDAR_Filter requires LiDAR hardware and accompanying code, such as the Ouster LiDAR hardware and
the Ouster_LiDAR function block. See the Plus+1 Compliant Ouster Block User Manual for information,
including background on LiDARs.

LiDAR_Filter includes many parameters to adjust a LiDAR scan and eliminate unwanted data. The LiDAR
hardware scans the environment by sending out laser beams and recording the coordinate point in
space when they land on something, thereby forming a point cloud. That point cloud data goes into the
LiDAR_Filter function block. Then, parameters set boundaries between a minimum and maximum value
to either keep or remove point cloud data. Boundaries could be physically in space or limits on light
reflectivity. Removed data cannot be seen or saved.

LiDAR_Filter behaves similarly to Planar_Surface_Segmentation, but processes data faster and
requires manually entering which LiDAR data to remove.

The images above show how point cloud data within minimum and maximum parameters are kept
(circles), and point cloud data outside the parameter boundaries are removed (x's). Numbers within the
minimum and maximum boundaries could indicate spatial dimensions (left image) or light reflectivity
(right image).

LiDAR_Filter removes point cloud data surrounding the physical LiDAR hardware in various shapes.
These shapes include a 2D or 3D rectangle with minimum and maximum values for X, Y, and Z. Other
parameters remove sections of the 360 degree circle around the LiDAR hardware, such as range,
elevation, and azimuth angles. Mix parameters to create unique shapes, if desired. By default, point cloud
data is kept inside of a shape and removed outside of it. If parameters create overlapping shapes, the
overlapped point cloud data is kept rather than data within the whole shape. Multiple shapes that do not
overlap cannot remove any point cloud data. Instead, use multiple LiDAR_Filter function blocks in an
application.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 89

The images above show a person sitting at a desk with a LiDAR point cloud around them. The top images
show the Max_Range parameter lowered so the point cloud does not go out as far from the LiDAR
hardware, and the bottom images show the Max_Elevation parameter lowered so the person's head is
out of view.

The image above shows the Max_Azimuth parameter lowered, which cuts out horizontal sections of the
point cloud.

LiDAR_Filter parameters also adjust for reflectivity and light, allowing applications to ignore fog or
construction vests. These ambient and intensity options could be used with or without the other shape
cutting parameters.

The image above shows a LiDAR scan point cloud with a rectangular reflective square next to a sitting
person. Then, the Max_Intensity parameter is lowered to eliminate the reflective square from the point
cloud.

If Inverse is selected or True, then point cloud data within a shape is removed, and data outside the
shape is kept in the application. When LiDAR_Filter inverses reflectivity values, the LiDAR keeps point
cloud data with very high and low reflectivity and removes point cloud data landing on reflective objects

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

90 | © Danfoss | June 2025 AQ295075513101en-000109

within the middle of the spectrum. If some parameters require inverse point cloud data but not others,
use multiple LiDAR_Filter function blocks in an application.

The image above shows how the Inverse parameter switches whether point cloud data is used or
removed inside of the minimum and maximum parameter bounds.

Either ordered or unordered point cloud data could enter LiDAR_Filter. Ordered point cloud data
includes X, Y, and Z values for each laser beam point that the LiDAR hardware sends out. These X, Y, and Z
values are different than the LiDAR_Filter rectangular shape parameters. Unordered point cloud data
eliminates the point position information but allows faster processing time. The Ordered parameter
allows data to leave LiDAR_Filter in either an ordered or unordered state. However, after data becomes
unordered, the X, Y, and Z point information can never be recovered to switch back to ordered.

After sectioning off the point cloud within LiDAR_Filter, data can pass to any detection blocks, such as
Obstacle_Detect, Post_Detect, or Reflector_Detect.

Application Information

Common function blocks used with the LiDAR_Filter function block are Data_Lockers,
Obstacle_Detect, Post_Detect, Reflector_Detect, and the Ouster_LiDAR function block if using an
Ouster LiDAR hardware.

For an application to automatically divide a point cloud while the machine moves, use the
Planar_Surface_Segmentation function block instead of creating fixed point cloud criteria in
LiDAR_Filter.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 91

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as the Ouster
LiDAR hardware and the Ouster_LiDAR function block. This gathers point cloud data which
LiDAR_Filter uses. Sections of the point cloud could be filtered if no posts exist in that line of view.
Then, Post_Detect could be programmed to react when posts are detected, such as a machine
moving toward a post.

2. Scenario two shows LiDAR_Filter passing information into Reflector_Detect. The intensity and
ambient light parameters could filter out high levels of brightness so construction vests are not
detected by Reflector_Detect, but less bright reflectors are detected. Then, the machine can be
programmed to react to the reflectors it sees.

3. Scenario three includes two LiDAR_Filter function blocks. Parameters within the first LiDAR_Filter

eliminate sections of the point cloud data which the application does not need, such as removing
points going into the sky. Then, the second LiDAR_Filter could remove a rectangle from the point
cloud so points do not land on the machine itself. The smaller point cloud data left goes into
Obstacle_Detect for a machine to react when an obstacle is detected, such as slowing down.

Additionally, place the LiDAR_Filter function block:
• After LiDAR data is collected, such as after the Ouster_LiDAR function block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.
• In a part of the application where removed point cloud data will not be needed by any function

blocks downstream.

Example

The example shows the LiDAR_Filter function block used to filter out point cloud data from the ceiling,
as well as fog.

The environment where the machine runs matters a great deal for LiDAR_Filter. Test the machine in
different environmental settings which relate to where the machine will be used in real life situations.

1. Set up a LiDAR scanner on the machine. This example uses Ouster LiDAR hardware. View the Ouster

LiDAR User Manual to set up the hardware and Ouster_LiDAR function block.

2. Set up the LiDAR code. This example uses the Ouster_LiDAR function block. The LiDAR scan is
determined by the physical hardware and accompanying LiDAR code. For example, if the hardware is
set up so the ground or wall cannot be seen, or the Ouster_LiDAR function block eliminates part of
the point cloud, these parameters cannot be adjusted in LiDAR_Filter.

3. Add in the Data_Lockers block if it was not already in the application. This block should not be
connected to any buses or wires, only exist once in the application, and can go on any page within
the application.

4. Connect O_PtCld from the Ouster_LiDAR block to PtCld_In in LiDAR_Filter. This allows point cloud
information gathered from the LiDAR scan to be consumed by LiDAR_Filter. This information flows
to a data locker and back automatically between these two blocks, so no numbers need to be
adjusted.

5. Connect LiDAR_Filter to another Autonomous Control Library (ACL) perception block. Here, the
filtered point cloud connects to the Reflector_Detect function block. Custom code after
Reflector_Detect tells the machine how to react when it encounters reflectors.

6. Determine whether the LiDAR reads data within the minimum and maximum parameter boundaries
that will be configured. Here, the Inverse is False so data is used inside the boundaries and
eliminated outside of them.

7. In the environment surrounding the machine, measure the angle from the LiDAR hardware to the
ceiling to determine which angle of the point cloud to cut off. Here, Max_Elevation is set to 0 so the

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

92 | © Danfoss | June 2025 AQ295075513101en-000109

LiDAR hardware looks straight ahead and not above. Min_Elevation is set to -9000 for -90 degrees to
look toward the ground.

The image shows a LiDAR (circled) and what it will view between 0 to -90 degrees (dotted lines).

8. Test if the point cloud eliminated points outside of the minimum and maximum elevation parameter
values. Here, that is 0 to -90 degrees elevation, so the LiDAR scan should only include points straight
from its eye and down to the ground.

• Use Ouster Studio to visualize the point cloud if using an Ouster LiDAR.

• Connect another function block, like Obstacle_Detect, and set a zone where the ceiling would
be. See if the LiDAR detects something in that zone. If LiDAR_Filter works, then nothing should
be picked up in that zone.

• Check the internal signals to see that the Vertical_Resolution numbers change.

9. Put in values for Min_Ambient and Min_Intensity to filter out very low reflective light that occurs
with fog. Reflective values occur at different rates based on each LiDAR hardware. By filtering out low
reflectivity, the LiDAR will still pick up construction vests and higher reflective elements in the
environment.

10. Test the reflective parameters by placing different reflective items in front of the LiDAR. Ideally, use
fog. Leaving the Max_Ambient and Max_Intensity values as the default allow point cloud points
with high reflectivity values to be used in the application.

• Use Ouster Studio to visualize the point cloud reflectivity values.

• Check the internal signals to see that the Total_Valid_Points_Output numbers change.

11. Leave any unwanted LiDAR_Filter parameters as the default. This ensures more sections of the point
cloud will not be eliminated. Decide whether the point cloud should be ordered or unordered for the
Ordered parameter.

12. The Updated flag on the service tool indicates that point cloud information passed out of
LiDAR_Filter to Reflector_Detect. However, this cannot tell which points, if any, were eliminated
from the LiDAR scan. Create code for the machine to react when the LiDAR scan detects reflective
objects with higher ambient and intensity reflectivity than fog.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 93

Inputs

The following table describes inputs required for the LiDAR_Filter function block. This block requires a
LiDAR, LiDAR code such as the Ouster_LiDAR function block, and a Data_Lockers block. Any block that
outputs point clouds can be used as an input to LiDAR_Filter.

Item Type Range Description [Unit]

PtCld_In S8 -1-99 The point cloud data locker ID where LiDAR scan data is stored. Point cloud data can be
2D, 3D, ordered, or unordered.
[Locker ID]

Parameters

The following table describes parameters for the LiDAR_Filter function block. Most blocks take in
ordered point cloud data, but only a few blocks can access unordered point cloud data.

Leave the default values unless removing point cloud data.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Inverse BOOL T/F Determines whether to use point cloud data inside or outside the bounds of minimum
and maximum parameters.
T: Point cloud data outputs from outside minimum and maximum bounds. Point cloud
data inside of these bounds is eliminated.
F: Point cloud data outputs from inside minimum and maximum bounds. Point cloud data
outside of these bounds is eliminated.
Default: False

Ordered BOOL T/F Determines whether the block outputs ordered or unordered point cloud data. This is only
valid if PtCld_In is ordered.
T: PtCld_Out is ordered.
F: PtCld_Out is unordered.
Default: True

Min_X S32 -2147483648 to
Max_X -1

The minimum X coordinate value determined by using the right hand rule. Point cloud
data below this value is eliminated from the output point cloud unless Inverse is True.
Default: -2147483648
[mm]

Max_X S32 Min_X +1 to
2147483647

The maximum X coordinate value determined by using the right hand rule. Point cloud
data above this value is eliminated from the output point cloud unless Inverse is True.
Default: 2147483647
[mm]

Min_Y S32 -2147483648 to
Max_Y -1

The minimum Y coordinate value determined by using the right hand rule. Point cloud
data below this value is eliminated from the output point cloud unless Inverse is True.
Default: -2147483648
[mm]

Max_Y S32 Min_Y +1 to
2147483647

The maximum Y coordinate value determined by using the right hand rule. Point cloud
data above this value is eliminated from the output point cloud unless Inverse is True.
Default: 2147483647
[mm]

Min_Z S32 -2147483648 to
Max_Z - 1

The minimum Z coordinate value determined by using the right hand rule. Point cloud
data below this value is eliminated from the output point cloud unless Inverse is True.
Default: -2147483648
[mm]

Max_Z S32 Min_Z + 1 to
2147483647

The maximum Z coordinate value determined by using the right hand rule. Point cloud
data above this value is eliminated from the output point cloud unless Inverse is True.
Default: 2147483647
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

94 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Min_Intensity U16 0 to
Max_Intensity - 1

Intensity refers to brightness illuminated by the laser in the LiDAR. Point cloud data below
this minimum intensity value is eliminated from the output point cloud unless Inverse is
True.
Default: 0
[0.01%]

Max_Intensity U16 Min_Intensity + 1
to 10000

Intensity refers to brightness illuminated by the laser in the LiDAR. Point cloud data above
this maximum intensity value is eliminated from the output point cloud unless Inverse is
True.
Default: 10000
[0.01%]

Min_Ambient U16 0 to
Max_Ambient - 1

Ambient refers to light in the background. Point cloud data below this minimum intensity
value is eliminated from the output point cloud unless Inverse is True.
Default: 0
[0.01%]

Max_Ambient U16 Min_Ambient + 1
to 10000

Ambient refers to light in the background. Point cloud data above this maximum intensity
value is eliminated from the output point cloud unless Inverse is True.
Default: 10000
[0.01%]

Min_Azimuth S16 -18000 to
Max_Azimuth -1

Azimuth refers to the side-to-side angle from the LiDAR. Point cloud data below this
minimum azimuth value is eliminated from the output point cloud unless Inverse is True.
Default: -18000
[0.01 degree]

Max_Azimuth S16 Min_Azimuth +1
to 18000

Azimuth refers to the side-to-side angle from the LiDAR. Point cloud data above this
maximum azimuth value is eliminated from the output point cloud unless Inverse is True.
Default: 18000
[0.01 degree]

Min_Elevation S16 -9000 to
Max_Elevation -1

Elevation refers to height, or the up-and-down angle from the LiDAR. Point cloud data
below this minimum elevation value is eliminated from the output point cloud unless
Inverse is True.
Default: -9000
[0.01 degree]

Max_Elevation S16 Min_Elevation +1
to 9000

Elevation refers to height, or the up-and-down angle from the LiDAR. Point cloud data
above this maximum elevation value is eliminated from the output point cloud unless
Inverse is True.
Default: 9000
[0.01 degree]

Min_Range U32 0 to Max_Range

-1
Range refers to close-to-far distance from the LiDAR. Point cloud data below this minimum
elevation value is eliminated from the output point cloud unless Inverse is True.
Default: 0
[0.01 degree]

Max_Range U32 Min_Range +1 to
4294967295

Range refers to close-to-far distance from the LiDAR. Point cloud data above this
maximum elevation value is eliminated from the output point cloud unless Inverse is
True.
Default: 4294967295
[0.01 degree]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 95

Outputs

The following table describes outputs for the LiDAR_Filter function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0X8008: At least one parameter is out of range.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

PtCld_Out S8 -1-99 The point cloud data locker ID where filtered point cloud data is stored.
[Locker ID]

Internal Signals

The following table describes what is happening internally in the LiDAR_Filter function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

LiDAR_Filter_Err U8 0-6 Indicates when an error occurred in the block functionality.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Elevation or azimuth parameters are outside of the minimum and maximum ranges of
the LiDAR.
5: Selected filtering attribute does not exist in the original point cloud.
6: Input point cloud is unordered and the Ordered flag is True.

Updated BOOL T/F Indicates that a new point cloud is available in the output data locker.
T: A new point cloud is available.
F: No new data is available.

Vertical_Resolution U32 0-4294967295 The number of LiDAR ring rows. These numbers decrease with elevation parameters
applied. This value will be 1 if the output point cloud is unordered, indicating one
compressed ring with Not A Number (NANs).
If the numbers are 0 or are the same after elevation parameters are applied, then elevation
is not working.

Horizontal_Resolutio

n

U32 0-4294967295 The number of LiDAR points in a ring row. These numbers decrease with azimuth
parameters applied. This value will be equal to Total_Valid_Points_Output when the
output point cloud is unordered.
If the numbers are 0 or are the same after azimuth parameters are applied, then azimuth is
not working.

Total_Valid_Points_In

put

U32 0-4294967295 All the point cloud points entering LiDAR_Filter. Valid LiDAR points require at least an X,
Y, or Z coordinate, otherwise they appear as Not A Number (NANs).
This should have higher numbers than Total_Valid_Points_Output to indicate the
filtering parameters worked.

Total_Valid_Points_O
utput

U32 0-4294967295 All the point cloud points exiting LiDAR_Filter. Valid LiDAR points require an X, Y, or Z
coordinate, otherwise they appear as Not A Number (NANs).
This should have lower numbers than Total_Valid_Points_Input to indicate the filtering
parameters worked. If this is 0, then all the LiDAR points were discarded and something
likely went wrong.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

96 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Processing_Time U32 0-4294967295 The amount of time taken for LiDAR_Filter to receive data, process it, and produce a new
point cloud.
High processing time increases the latency for downstream function blocks, and machines
react slower as the processing time increases.
[µs]

LiDAR_Filter Troubleshooting

The following table describes errors that could occur in the LiDAR_Filter function block and ways to fix
them.

View the LiDAR_Filter_Err signal on the Service Tool screen to see if any error numbers appear. In PLUS
+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

LiDAR_Filter_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. Turn the controller off and on, or use less code in the application.

2 Not enough memory available to create thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

3 Thread timeout. There may be too much code creating a longer processing time.
Reduce the LiDAR resolution or delete other processing blocks.
See Reduce Processing Time on page 174. Turn the XM100 off, wait
a bit, and restart it.

4 Elevation or azimuth parameters are outside of the capabilities of
the LiDAR hardware.

Check the LiDAR hardware to determine the ranges allowed.

5 The reflective or spatial attribute filtered from the point cloud
does not exist within the LiDAR hardware capabilities.

Check if the LiDAR hardware supports the desired attribute being
filtered. Use the default parameters. Some LiDARs do not have
reflective capabilities or have limited point cloud ranges.

6 Unordered point cloud data entered LiDAR_Filter, and the
Ordered parameter is selected or True.

Deselect or change the Ordered parameter to False so unordered
point cloud data outputs from LiDAR_Filter.
Or, change the application code so ordered point cloud data
enters LiDAR_Filter. In this case, ordered point cloud data
outputs from LiDAR_Filter to the rest of the application, too.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 97

The LiDAR_Mask function block enables an application to use different sections from an input LiDAR
scan.

LiDAR_Mask requires a piece of LiDAR hardware and accompanying code, such as the Ouster LiDAR
hardware and the Ouster_LiDAR function block. See the Plus+1 Compliant Ouster Block User Manual for
information.

LiDAR_Mask takes in point cloud information from the LiDAR hardware and LiDAR code. Parameters
within the block crop the point cloud field of view or hide some rows of the point cloud. This omits some
data to save processing time.

The image shows a point cloud from the LiDAR scanner with some ring rows masked out.

Input data types must exactly match the indicated type to successfully compile.

Input ranges must be within the range indicated. An input that is out of range is coerced to fit within that
range except arrays. Out of range array input values may result in unexpected behavior.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Mask Function Block

98 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The following table describes inputs to the LiDAR_Mask function block.

Item Type Range Description [Unit]

O_PtCld_In S8 -1 - 99 The data locker ID of input ordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The following table describes parameters of the LiDAR_Mask function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Start_Angle S16 -18000 -
[Stop_Angle-1]

Specifies which beam of the LiDAR scan is used to start masking the point cloud.
Default: -18000
[0.01 degree]

Stop_Angle S16 [Start_Angle +1] -
18000

Specifies which beam of the LiDAR scan is used to stop masking the point cloud.
Default: 18000
[0.01 degree]

Bitmask (ARRAY[256
]U8)

0 - 1 Specifies which rings of the LiDAR scan are included in the masked point cloud.
Each value in the array includes or excludes the corresponding ring based on the value.
0: Excludes the ring in the masked point cloud.
1: Includes the ring in the masked point cloud.
The first value in the array controls the top-most ring in the LiDAR scan data. The final
value controls the bottom-most ring in the LiDAR scan data.
Default: ones(256)

Outputs

The following table describes outputs of the LiDAR_Mask function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.
The bus contains all inputs, parameters, internal signals, and outputs. For more
information on internal signals, see Internal Signals on page 100.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

O_PtCld_Out S8 -1 - 99 The data locker ID of output ordered point cloud data.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Mask Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 99

Internal Signals

The following table describes internal signals of the LiDAR_Mask function block.

Item Type Range Description [Unit]

Lidar_Mask_Err U8 0-8 Indicates errors occurred in the function block operation.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Start_Angle is smaller than the sensor's minimum measuring angle.
5: Stop_Angle is bigger than the sensor's maximum measuring angle.
6: Invalid angular step.
7: No ring selected.
8: Point cloud is unordered.

Masked_Height U32 0-4294967295 The total number of rings in the height of the masked point cloud. The height of the
filtered point cloud depends on the Bitmask parameter. Height is equal to the total
number of enabled rings.

Masked_Width U32 0-4294967295 The total number of horizontal points in each ring constituting the width of the filtered
point cloud. Width depends on the Start_Angle, Stop_Angle and the size of a single
angular step.

Processing_Time U32 0-4294967295 The amount of time taken to process the input point cloud.
[µs]

Updated BOOL T/F Indicates that a new point cloud is available in the output data locker.
T: A new point cloud is available.
F: No new data is available.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

LiDAR_Mask Function Block

100 | © Danfoss | June 2025 AQ295075513101en-000109

The Line_Follower function block enables a machine to follow a line generated by a line detection block,
such as Wall_Detect. The function block outputs a curvature value that brings the machine onto a path.

Use this block to have a machine travel in a line using a feature in the environment, such as a wall. The
wall or other environmental feature registers as an actual line, and then the machine moves on an
imaginary virtual line that is to the side of the actual line.

The Line_Follower diagram shows the machine aiming toward a point far ahead, called the Lookahead
Point. The machine goes along a virtual line toward that point at a gentle curve if the Lookahead Point is
far away, and the machine goes at a tighter curve if the point is very close. Because the Line_Follower

function block uses angles to follow a line, the Lookahead_Distance must be greater than the distance
to the virtual line. The output is a curvature, which can be used to control the machine's steering systems.

The offset parameter is the distance between the actual line and the virtual line. For example, paired with
the Wall_Detect function block, the actual line is the wall. The machine runs on a virtual line alongside

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Follower Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 101

the actual line (wall), and the offset parameter could be how far away from the actual line (wall) the
machine should be so it does not crash. The machine in this situation moves toward a point in the
distance (Lookahead Point), and the machine goes over the virtual line in an "S" shape because it uses
angles to detect the point ahead.

When the machine moves along a virtual line that is to the right of the actual line, the offset is a negative
number. When the machine moves along a virtual line that is to the left of the actual line, the offset is a
positive number.

When the machine approaches the actual line at 90 or -90 degrees, a positive offset means the virtual line
is closer to the machine than the actual line. A negative offset means the virtual line is farther from the
machine than the actual line. The machine faces directly away from the actual line at 90 degrees, and the
machine faces the actual line at -90 degrees.

The Explanation of angles diagram shows the angles the machine makes relative to its position. A
virtual line to the left of the machine shows 0 degrees. A virtual line ahead of the machine shows -90
degrees.

If the Angle input value is -90 or 90 degrees, the command might be unstable and result in incorrect
Curvature output values to the left or right.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Follower Function Block

102 | © Danfoss | June 2025 AQ295075513101en-000109

Example

Review the example which uses the Wall_Detect function block to detect a wall and the Line_Follower

function block to drive along the wall with an offset.

Follow these steps to add the function block to an application, and then route the inputs and outputs.

1. Configure Wall_Detect. For more information, see Wall_Detect Function Block on page 231.

2. Add Line_Follower.

3. Route the Distance and Angle into the Line input on Line_Follower.

4. Create an offset parameter to go into the Line input. For example, use the Non-volatile Memory
Dynamic Input component in PLUS+1® GUIDE.

5. (Optional) Route the Diag, Status, and Fault outputs.

a) Route Diag to report diagnostic data.

b) Route Status to report data on the status of the function block.

c) Route Fault to report data on issues relating to the function block.

6. Set the parameters for the Line_Follower function block. Use the Non-volatile Memory Dynamic
Input component in PLUS+1® GUIDE to create the Lookahead Dist.

7. Save the application.

Inputs

The following table describes the inputs for the Line_Follower function block.

Item Type Range Description [Unit]

Para BUS —— Bus containing configuration signals for the function block.

Lookahead_Dist U32 0 - 500000 Sets the distance ahead on the path that the machine targets while measuring the virtual
line. Shorter distances are more accurate but the system is less stable. Set this to a value
greater than the Distance input.
Default: 3000
[mm]

Line BUS —— Bus containing polar coordinates of the virtual line for the machine to follow.

Distance U32 0 - 500000 The normal (tangential) distance between the steering center of the machine and the
actual line.
[mm]

Angle S16 -18000 - 18000 The angle between the actual line and where the machine is headed. If the Angle input
value is -90 or 90 degrees, the command might be unstable and result in incorrect
Curvature output values to the left or right.
[0.01 deg]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Follower Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 103

Item Type Range Description [Unit]

Offset S32 -500000 - 500000 Distance between the actual line and the virtual line. If the machine runs parallel to the
actual line, positive offset means the virtual line is left of the actual line, and negative
offset means the virtual line is right of the actual line. When the Angle is 90 or -90 degrees,
positive offset creates a virtual line closer to the machine.
[mm]

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Outputs

The following table describes outputs from the Line_Follower function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the condition of the function block.
Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Reports issues experienced with the function.
Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x0001: Input value too low.
0x0002: Input value too high.
0x0004: The total distance (Distance +/- Offset) is larger than or equal to the
Lookahead_Dist.

Curvature S32 -800000 - 800000 Curvature values needed to get to the virtual line. Positive values are left curves. Negative
values are right curves.
[0.01/km]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Follower Function Block

104 | © Danfoss | June 2025 AQ295075513101en-000109

The Line_Yaw_Estimate function block estimates the expected orientation of the machine from where it
is pointed. It allows indoor navigation without GNSS data by using angles with reference to the walls to
track the machine's orientation.

The Line_Yaw_Estimate function block improves the accuracy of the Position Filter yaw output in
indoor environments where GNSS signals are weak. For example, the machine moves inside a room and
uses a wall as a reference point to fix its bearing instead of unreliable GNSS data.

Use Line_Yaw_Estimate for machines working indoors and the Yaw_Estimate function block if the
machine is outdoors with GNSS data.

Line_Yaw_Estimate estimates if the machine is angling away from the direction it was programmed to
go. For example, if a machine is programmed to go alongside a wall, this block can detect if it is angled
slightly toward or away from the wall after it starts moving.

However, if the machine is equidistant to two walls and pointed toward a corner, the output may be
inconsistent. Move the machine slightly toward one of the walls to minimize the Wall_Std_Dev and
correct the output.

Wall_Std_Dev should be utilized to prevent the scenario shown in the diagram.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Yaw_Estimate Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 105

Example

Review the example using the Wall_Detect, Position_Filter, and Line_Yaw_Estimate function blocks
together.

Before completing these steps:
• Set up the machine so it runs parallel alongside a wall and not at an angle. If the machine is turned off

and back on again, it will need to be set up to run parallel to the wall.

• Verify that all walls are perpendicular to each other, such as a rectangular or square room.

• If used indoors, disable GNSS data coming from the Position_Filter block.

• If used outdoors with GNSS data, verify the wall used to estimate yaw is aligned to the geographical
North with the machine facing east.

1. Configure Wall_Detect. For more information, see Wall_Detect Function Block on page 231.

2. Configure Position_Filter. Do not use GNSS data if using Line_Yaw_Estimate indoors. For more
information, see Position_Filter Function Block on page 178.

3. Add Line_Yaw_Estimate to the application.

4. Route Wall_Detect and Position_Filter to Line_Yaw_Estimate.

5. Route the Yaw output from Line_Yaw_Estimate to the Yaw input on Position_Filter to create a
feedback loop.

6. (Optional) Route the Diag, Status, and Fault outputs.

a) Route Diag to report diagnostic data.

b) Route Status to report data on the status of the function block.

c) Route Fault to report data on issues relating to the function block.

7. Set the parameters for Line_Yaw_Estimate. Setting the threshold range very low calculates the value
differences in the Internal Signals within the Checkpoint page.

8. Save the application.

9. Download the application with the machine in the correct position. The application needs to
determine the wall data first in order for the whole program to work. If the machine is not oriented
properly to the wall when it starts, the yaw will be incorrect.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Yaw_Estimate Function Block

106 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The following table describes the inputs for the Line_Yaw_Estimate function block.

Item Type Range Description [Unit]

Para BUS —— Bus containing configuration signals for the function block.

Angle_Threshold U16 0 - 4500 The maximum allowed yaw error that can be corrected by the Line_Yaw_Estimate

function block.
Default: 500
[0.01 deg]

Yaw_Std_Dev_Thresh

old

U32 1 - 4294967295 The maximum standard deviation allowed for deciding whether to update the output
based on the Position_Filter function block's Yaw_Std_Dev signal.
Default: 1000
[0.01 deg]

Wall_Std_Dev_Thresh

old

U32 1 - 4294967295 The maximum standard deviation allowed for deciding whether to update the output
based on the Wall_Detect function block's Angle_Std_Dev signal.
Default: 500
[0.01 deg]

Wall BUS —— Bus containing input values from the Wall_Detect function block.

Angle S16 -18000 - 17999 The angle to the wall in radial coordinates provided by the Wall output on the
Wall_Detect function block.
[0.01 deg]

Angle_Std_Dev U32 1 - 4294967295 The standard deviation of the Angle value from the Wall_Detect function block. It is an
angular degree that the Angle input can deviate without modifying the value.
[0.01 deg]

Updated BOOL T/F The updated value from the Wall_Detect block.

Pos BUS —— Bus containing input values from the Position_Filter function block.

Yaw S32 -18000 - 17999 The Yaw value from the Position_Filter function block. The Yaw value indicates the
heading of the machine.
[0.01 deg]

Yaw_Std_Dev U32 1 - 4294967295 The standard deviation of the Yaw value. It is an angular degree that the Yaw input can
deviate without modifying the value.
[0.01 deg]

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Outputs

The following table describes outputs from the Line_Yaw_Estimate function block.

Function Block Outputs

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Difference S16 -18000 - 18000 The relative difference between the Angle and Yaw input values. The function block uses
this value to calculate the Yaw output.
[0.01 deg]

Status U16 —— Reports the current status of the function. It is bitwise code that reports multiple statuses.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Yaw_Estimate Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 107

Function Block Outputs (continued)

Item Type Range Description [Unit]

Fault U16 —— Reports issues related to the function. It is bitwise code that reports multiple faults.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Yaw BUS —— Bus containing Yaw, Yaw_Std_Dev, and Updated output signals. Connect this bus to the
Yaw input on the Position_Filter function block.

Updated BOOL —— Indicates that new information is available from the function block.
T: New data is available.
F: No new data is available.

Yaw S32 -18000 - 17999 The value of yaw for the machine. Use this value to correct the Yaw value in the
Position_Filter function block.
[0.01 deg]

Yaw_Std_Dev U32 1 - 4294967295 The standard deviation of the Yaw output.
[0.01 deg]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Line_Yaw_Estimate Function Block

108 | © Danfoss | June 2025 AQ295075513101en-000109

The Obstacle_Avoidance function block simplifies the evaluation of an incoming LiDAR scan and
determines the best option.

The LiDAR scanner is typically placed at the front of a machine. Use the Sensor_Offset parameters to
define where this LiDAR is with respect to the steering point of the machine. This block creates a fan of 15
zones centered around the steering point and spans the defined Max_Angle. This primary output is the
Best_Angle, which is calculated based on the selected mode. Use the raw zone scores for a more
customized interpretation.

Consider the width of the machine when calculating the best angle.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Avoidance Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 109

Inputs

Inputs to the Obstacle_Avoidance function block are described.

Item Type Range Description [Unit]

Mode U8 0-3 Selection of Best Angle calculation.
0: Raw, no additional processing of zone scores, Best_Angle = lowest score, a tie goes to
the Target_Angle.
1: Weighted, scaling and addition factors are applied to each zone based on how far away
they are from the Target_Angle.
2: Centered, designed for following a corridor and weighted to find the most open space
in the middle.
3: Nearest Acceptable, next closest angle to Target_Angle that scores below the
threshold unless Target_Angle is below the threshold.

Target_Angle S16 -18000-18000 Desired angle for machine to drive.
[0.01 deg]

PtCld U8 -1-99 The data locker ID of ordered or unordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The following table describes parameters for the Obstacle_Avoidance function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Max_Angle U16 0-36000 Magnitude of max left to max right angle.
Default: 3000
[0.01 deg]

Width U16 0-65535 Width of the zones. All zones have the same width.
Default: 1000
[mm]

Threshold U16 1-10000 Higher limit of points for a zone to be invalid. Used only in mode 3.
Default: 10
[number of points]

Weight_Scale S16 -25000-25000 Scaling factor that is used to multiple the score of the zone. A negative value steers toward
the highest scoring zone.
Default: 1
[0.001]

Weight_Add U16 0-1000 Factor (Integer) that is adding to each zone after scaling factor is applied.
Default: 0

Min_Distance U16 0 to
Max_Distance - 1

Distance between the steering point of the machine and the start of the zone.
Default: 0
[mm]

Max_Distance U16 Min_Distance + 1
to 65535

Distance between the steering point of the machine and the end of the zone.
Default: 1000
[mm]

Min_Height S32 -50000 to
Max_Height - 1

Minimum height of the zones with respect to the steering point. All zones have the same
height.
Default: 0
[mm]

Max_Height S32 Min_Height + 1
to 50000

Maximum height of the zones with respect to the steering point. All zones have the same
height.
Default: 1000
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Avoidance Function Block

110 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Sensor_Offset_X S32 -2147483648-2147
483647

The distance from the steering point of the machine along the x-axis to the LiDAR scanner.
LiDARs in front of the steering point have positive values and in back have negative
values.
Default: 0
[mm]

Sensor_Offset_Y S32 -2147483648-2147
483647

The distance from the steering point of the machine along the y-axis to the LiDAR scanner.
LiDARs to the left of the steering point have positive values and to the right have negative
values.
Default: 0
[mm]

Sensor_Offset_Z S32 -2147483648-2147
483647

The distance from the steering point of the machine along the z-axis to the LiDAR scanner.
LiDARs above the steering point have positive values and below have negative values.
Default: 0
[mm]

Sensor_Orientation S16 -18000-18000 Rotation of the LiDAR scanner around the z-axis in relation to the machine.
Default: 0
[0.01 deg]

Outputs

Outputs of the Obstacle_Avoidance function block are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Outputs BUS —— This bus provides zone scores and resulting angle information.

Updated BOOL T/F New information is available from the block namespace for each Diag signal.
T: New data is available.
F: New data is not available.

Scores (Array[15]U3
2)

0-4294967295 Reports the number of points in each zone from the LiDAR scan data.

Total_Valid_Points U32 0-4294967295 The number of valid LiDAR points. These obtain data when landing on objects. An
unusually low number may indicate issues. Invalid points include LiDAR points going into
the sky or dark surfaces, which are not detected by the LiDAR.
For ordered point clouds, this is the number of valid LiDAR points found within and close
to the zones. LiDAR points are counted multiple times if zones overlap.
For unordered point clouds, this is the number of valid LiDAR points the LiDAR sees in the
whole point cloud, regardless of zones.

Zone_Angles (Array[15]S16
)

-32768-32767 Array of the calculated orientation of each zone.
[0.01 deg]

Best_Score U32 0-4294967295 Least points count in a single zone out of all the 15 zones.

Best_Angle S16 -32768-32767 Angle of the zone with the best score.
[0.01 deg]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Avoidance Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 111

The Obstacle_Detect function block uses information from a piece of LiDAR hardware to see if there are
objects around the LiDAR.

Obstacle_Detect requires a control device like the DM1000 or XM100, LiDAR scanner, and the
accompanying code. See the Plus+1 Compliant Ouster Block User Manual for information about how
LiDARs work, Ouster LiDAR hardware, and the Ouster_LiDAR function block.

If the LiDAR hardware sees solid objects within its field-of-view, Obstacle_Detect determines where the
obstacle is located in relation to the LiDAR hardware, and then further code decides how the machine
should react to those detected objects. In order to be seen, objects need some amount of reflectivity.
Items far away, transparent, or very dark are harder to detect.

To find the location of objects, Obstacle_Detect divides physical space around the LiDAR into invisible
zone boxes, which are not related to UTM zones. The LiDAR sends out invisible light points which send
information back to the LiDAR when they land on something. The points include X, Y, and Z coordinates,
which show where the object is physically located and which zone it belongs. Create these zone boxes
manually within Obstacle_Detect, as well as the code telling the machine how to react.

The images show a top and then side view of zones (depicted as green boxes) around a LiDAR (central
red object) with spiraling rings to indicate the coordinate points.

If tuning Obstacle_Detect, determine the zone parameters correctly or the functionality will not work
well. Additionally, make sure the zones and obstacles are within the field-of-view of the LiDAR. If they fall
outside what the LiDAR detects, then adjust the hardware and code related to the LiDAR. Zones can
overlap, with LiDAR points counting multiple times in the overlapping area.

The internal algorithm takes into consideration the parameters and creates a cuboid zone. Then, all the
points in the LiDAR point cloud are checked if they are within the zone or not. Zones can also be at an
angle to the LiDAR rather than parallel or perpendicular.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

112 | © Danfoss | June 2025 AQ295075513101en-000109

The image shows the LiDAR hardware on a machine and a top-down view of the LiDAR points within and
outside of six zones. The number of points detected within the zone, known as Scores in
Obstacle_Detect, are labeled in the corner of the zone boxes in this image. Points that are detected both
inside and outside the zones are known as the Total_Valid_Points in Obstacle_Detect and factor into
coding algorithms.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

Application Information

Common function blocks used with the Obstacle_Detect function block are Data_Lockers,
Planar_Surface_Segmentation, and the Ouster_LiDAR function block if using Ouster LiDAR hardware.

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as Ouster LiDAR
hardware and the Ouster_LiDAR function block. This gathers point cloud data which
Obstacle_Detect uses. Program the machine to react depending on any objects detected, such as
stopping or slowing down.

2. Scenario two includes Planar_Surface_Segmentation, which uses point cloud data from the LiDAR
to detect a surface such as the ground or a wall. It outputs a divided point cloud which has either the
ground or wall removed. This point cloud can then be passed into Obstacle_Detect to detect
obstacles in a more accurate and computationally efficient way.

3. Scenario three includes the LiDAR_Mask function block after the LiDAR code, followed by
Obstacle_Detect. LiDAR_Mask omits certain data from the LiDAR's point cloud, saving processing
time. Then, the machine can be programmed to react a certain way based on whether any objects are
detected.

Additionally, place the Obstacle_Detect function block:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 113

• After LiDAR data is collected, such as after the Ouster_LiDAR function block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.

Example

The example shows the Obstacle_Detect function block used as if a machine needs to detect something
in front of it in order to slow down or stop.

1. Set up the LiDAR hardware and accompanying code. This example includes the Ouster_LiDAR

function block and Ouster LiDAR hardware. See the Plus+1 Compliant Ouster Block User Manual for
more information. The LiDAR hardware needs to see where the expected obstacles would be
detected and the code set up to include point cloud information from that area. If the LiDAR code is
programmed so the range the LiDAR sees is too small, then the code for the LiDAR must be changed
in order for Obstacle_Detect to work.

2. Add the Obstacle_Detect function block. Additionally, add a Data_Lockers block if it does not
already exist in the application. It can go on any page.

3. Outside of PLUS+1® GUIDE, determine physically in the environment where obstacles should be
detected and therefore where zones should go. Create zones with respect to the LiDAR sensor acting
as the origin, see Sensor Coordinate System on page 19. Zones could be a constant area around a
moving machine, and in that case the LiDAR likely mounts on the machine. Or, create stagnant zones
in the environment, and in that case the LiDAR likely sits in a non-moving place where it sees these
zones at all times. Make sure the zone is within the LiDAR's field-of-view and valid range.

The example code includes two zones in front of a machine. The first zone appears as 0 and the
second zone as 1 in many places in the code because the range begins at 0. Objects detected in the
close zone tell the machine to stop, and obstacles detected in a farther away zone warn the machine
to slow down.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

114 | © Danfoss | June 2025 AQ295075513101en-000109

The images above show how the LiDAR on the machine determines the parameters of the zones.
Image A includes a top and side view of the LiDAR mounted in the front of the machine. Image B
shows the LiDAR moved to the back corner of the machine and mounted at an angle.

4. Decide the number of zone boxes to enter into Num_Zones on the parameters page within
Obstacle_Detect. The examples above show two zones in both images A and B, which are each
labeled Zone 0 and Zone 1. In this case, Num_Zones = 2 with the first zone as Zone 0.

5. Find the middle point within the first approximately defined zone box, and measure from there to the
LiDAR hardware. This middle of the zone is the X, Y, and Z coordinate. Image A shows Zone 0 with X,
Y, Z coordinates as 1200, 0, 0.

a) Enter the X coordinates into the array in the Obstacle_Detect function block parameter. The zone
number correlates with array values. Image A shows the X array as (1200, 2100, 0, ...) because Zone
0 is 1200, and Zone 1 is 2100. Leave all the other zone values in the X array as 0 because there are
no more zones. Image B shows X as (300, 300, 0, …) because the x-axis shifted due to the LiDAR
hardware being mounted in a different direction than image A. The center of the zones begin 300
mm in front of that LiDAR scanner.

b) Enter the Ycoordinates into the array. Y remains zero if the middle of the zone box is directly in
front of the LiDAR scanner. Image A shows the Y array as (0, 0, 0, …). Image B shows the array as
(3700, 4600, 0, …).

c) Enter the Z coordinates into the array. Z matches to the same height as the LiDAR scanner if left at
zero. Image A shows the Z array as (0, 0, 0, …). Image B shows Z as (-800, -700, 0, …) because the
middle of the two zones are below the LiDAR scanner in different places.

6. From the X, Y, and Z center point, create the zone box by adding in the width and length. When yaw
is zero, length is in the x-axis direction, and width is in the y-axis direction. Both images A and B show
array Length as (1000, 800, 0, …) and Width as (2000, 2000, 0, …).

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 115

The image shows the zone created with respect to the LiDAR hardware as the origin. Length follows
the x-axis, and Width follows the y-axis.

7. Create the zone height dimensions by entering the height above and below the Z coordinate. Image
A shows Z as zero with Max_Height array as (500, 500, 0, …) and Min_Height array as (-700, -500, 0,
…). Image B shows an alternate method of creating the height dimensions by adjusting the Z value
to the center of the zones. In this case, the zones are below the LiDAR hardware and not zero (-800,
-700, 0, …). Max_Height and Min_Height equal the total height divided by two, which are arrays
(600, 500, 0, …) and (-600, -500, 0, …). Sometimes, the machine pitches forward on uneven surfaces,
which make the zones detect the ground as an object. Set the minimum height higher off the ground
in that case.

The left image shows how Z could move above or below the LiDAR origin, as well as how the zone
height grows both above and below Z rather than the LiDAR. The right image displays a rotated zone
using yaw.

8. Determine rotation of the zones or LiDAR hardware, which can be addressed with Yaw. Image A
shows Yaw as zero because the LiDAR scanner is mounted facing forward on the machine, and the
examples are taking into account the machine coordinates. Image B shows Yaw as -90 degrees to
compensate for the LiDAR sensor facing sideways on the machine. In both cases, the resulting zones
have the same orientation despite being mounted differently.

9. Create code to react to the obstacles detected within the zones.

a) In this example, the Scores of the stop and warn zones adjust the propel speed of the machine.
Scores say how many valid points the LiDAR found within each zone and does not include invalid
LiDAR points. A larger score indicates a larger object within the zone or closer to the LiDAR
hardware.

b) In a different Obstacle_Detect_Area function block, Areas replaces Scores. Areas calculates the
approximate cross-sectional area of objects within each zone and adjusts for their closeness to the
LiDAR. The threshold numbers in this example would change to show area estimation.

10. Monitor the Updated flag to ensure new information comes through. If this stops updating, then the
block is not processing data. Optionally, see the Pre-Made Service Tool Screens on page 25.

Inputs

The table describes the inputs to the Obstacle_Detect function block.

Item Type Range Description [Unit]

PtCld S8 -1-99 The data locker ID of ordered or unordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

116 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The table describes parameters for the Obstacle_Detect function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

X (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the x-axis which determines the center of the zone(s). X uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Default: zeros (100)
[mm]

Y (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the y-axis which determines the center of the zone(s). Y uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Default: zeros (100)
[mm]

Z (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the z-axis which relates to the height of the zone(s). Z uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Height values above this value are positive and height values below this value are
negative.
Default: zeros (100)
[mm]

Yaw (ARRAY[100
]S16)

-18000-18000 Orientation of the zone(s) in the x-y plane.
Default: zeros (100)
[0.01 deg]

Width (ARRAY[100
]U16)

0-65535 Width of the zone(s). When the Yaw parameter is zero, Width is in the direction of the y-
axis of the LiDAR.
Default: 1000 * ones (100)
[mm]

Length (ARRAY[100
]U16)

0-65535 Length of the zone(s). When the Yaw parameter is zero, Length is in the direction of the x-
axis of the LiDAR.
Default: 1000 * ones (100)
[mm]

Num_Zones U8 0-100 Number of zone boxes created to find obstacles.
Leaving Num_Zones as 0 means there will be no zones. This saves processing power
when Obstacle_Detect is not used.
Default: 0

Min_Height (ARRAY[100
]S32)

-50000 to
Max_Height-1

Minimum height of the zone(s) with respect to the Z parameter.
Default: zeros (100)
[mm]

Max_Height (ARRAY[100
]S32)

Min_Height +1 to
50000

Maximum height of the zone(s) with respect to the Z parameter.
Default: 1000 * ones (100)
[mm]

Outputs

The table describes outputs of the Obstacle_Detect function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 117

Item Type Range Description [Unit]

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Zones BUS —— Contains the updated information for the zone boxes.

Updated BOOL T/F New information is available from the block.
T: New point cloud data has been processed.
F: No new point cloud data processed.

Scores (Array[100]S3
2)

0-4294967295 The number of valid LiDAR points within each zone box.

Total_Valid_Points U32 0-4294967295 The number of valid LiDAR points. These obtain data when landing on objects. An
unusually low number may indicate issues. Invalid points include LiDAR points going into
the sky or dark surfaces, which are not detected by the LiDAR.
For ordered point clouds, this is the number of valid LiDAR points found within and close
to the zones. LiDAR points are counted multiple times if zones overlap.
For unordered point clouds, this is the number of valid LiDAR points the LiDAR sees in the
whole point cloud, regardless of zones.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Obstacle_Detect Troubleshooting

The following table describes errors that could occur in the Obstacle_Detect function block and ways to
fix them.

View the Obstacle_Detect_Err signal on the Service Tool screen to see if any error numbers appear. In
PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Obstacle_Detect_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

2 Not enough memory available to create thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

3 Thread timeout. There may be too much code creating a longer processing time.
Reduce the LiDAR resolution or delete other processing blocks.
See Reduce Processing Time on page 174. Turn the XM100 off, wait
a bit, and restart it.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

118 | © Danfoss | June 2025 AQ295075513101en-000109

Other Errors and Fixes

Error Description How to Fix

Total_Valid_Points numbers are very low. These point numbers vary, but
they are based on the type of LiDAR. A high resolution LiDAR is expected
to get thousands of points, so a low number of 10 could indicate issues.

Check the LiDAR hardware to make sure nothing is blocking the scanner,
including dirt. See the LiDAR manufacturer's instructions for debugging
hardware issues.

Zones do not pick up objects. Check the parameters for the zones and adjust the numbers. Review the
coordinates of the LiDAR. Test the edges of the zones by moving an object
into and out of the zones.

The machine mistakenly detects an object in the zone or the ground as an
object.

Adjust the zone height so Min_Height begins higher from the ground. The
LiDAR could detect the ground as an object if it pitches forward while the
machine travels over bumpy ground.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 119

The Obstacle_Detect_Area function block uses a LiDAR to detect and estimate the size of objects inside
of a specified region.

This block requires a license for A+ Advanced.

Obstacle_Detect_Area requires a control device like the DM1000 or XM100, LiDAR scanner, and the
accompanying code. See the Plus+1 Compliant Ouster Block User Manual for information about how
LiDARs work, Ouster LiDAR hardware, and the Ouster_LiDAR function block.

Obstacle_Detect_Area behaves very similarly to the Obstacle_Detect function block. See
Obstacle_Detect Function Block on page 112 to set up zone boxes around the LiDAR.

A major difference is that Obstacle_Detect_Area determines the approximate cross-sectional area of
items inside of the zones around the LiDAR, whereas the simpler Obstacle_Detect only detects when an
object is in the zone, not the size.

Area estimation depends on the number of LiDAR points landing on objects, so neither the surface area
nor the exact cross-sectional area can be determined. However, the block calculations adjust for objects
far away or close to the LiDAR to give a rough size estimate. For example, if a bird flies close to the LiDAR,
lots of LiDAR points land on it, but the block knows it is still small. A building in the distance with a few
LiDAR points still reads as a large object. This allows fewer, larger zones to get detailed information
instead of many smaller zones. If there are multiple objects within a zone, the Areas output combines
them all.

The image above shows a LiDAR on a machine scanning objects inside of a zone box. The LiDAR detects
the approximate size of objects inside of the zone based on the LiDAR points landing on them.

Reflective items around the LiDAR could reduce its ability to estimate the object's cross-sectional area.

Additionally, Obstacle_Detect_Area only takes in ordered point cloud data and not unordered.
However, Obstacle_Detect supports both ordered and unordered point cloud data.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect_Area Function Block

120 | © Danfoss | June 2025 AQ295075513101en-000109

Application Information

The Obstacle_Detect_Area function block behaves similarly to the Obstacle_Detect function block,
except it gives a rough estimate of the cross-sectional area of items inside of the zone rather than just
detecting that something is in a zone.

Review the Application Information on page 113 for Obstacle_Detect. The Obstacle_Detect_Area

function block can be substituted in each scenario.

Example

The Obstacle_Detect_Area function block can be set up in a similar way as the Obstacle_Detect

function block.

Review the Example on page 114 where Obstacle_Detect is used as if a machine needs to slow down or
stop when anything is found in the zones around it. In addition, Obstacle_Detect_Area would give the
approximate cross-sectional area of all items within each zone in the Areas output instead of Scores.

Inputs

The table describes the inputs to the Obstacle_Detect_Area function block.

Item Type Range Description [Unit]

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The table describes parameters for the Obstacle_Detect_Area function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

X (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the x-axis which determines the center of the zone(s). X uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Default: zeros (100)
[mm]

Y (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the y-axis which determines the center of the zone(s). Y uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Default: zeros (100)
[mm]

Z (ARRAY[100
]S32)

-2147483648-2147
483647

Point on the z-axis which relates to the height of the zone(s). Z uses the Cartesian
coordinate system with respect to the LiDAR hardware as the origin.
Height values above this value are positive and height values below this value are
negative.
Default: zeros (100)
[mm]

Yaw (ARRAY[100
]S16)

-18000-18000 Orientation of the zone(s) in the x-y plane.
Default: zeros (100)
[0.01 deg]

Width (ARRAY[100
]U16)

0-65535 Width of the zone(s). When the Yaw parameter is zero, Width is in the direction of the y-
axis of the LiDAR.
Default: 1000 * ones (100)
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 121

Item Type Range Description [Unit]

Length (ARRAY[100
]U16)

0-65535 Length of the zone(s). When the Yaw parameter is zero, Length is in the direction of the x-
axis of the LiDAR.
Default: 1000 * ones (100)
[mm]

Num_Zones U8 0-100 Number of zone boxes created to find obstacles.
Leaving Num_Zones as 0 means there will be no zones. This saves processing power
when Obstacle_Detect_Area is not used.
Default: 0

Min_Height (ARRAY[100
]S32)

-50000 to
Max_Height-1

Minimum height of the zone(s) with respect to the Z parameter.
Default: zeros (100)
[mm]

Max_Height (ARRAY[100
]S32)

Min_Height +1 to
50000

Maximum height of the zone(s) with respect to the Z parameter.
Default: 1000 * ones (100)
[mm]

Outputs

The table describes outputs of the Obstacle_Detect_Area function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Zones BUS —— Contains the updated information for the zone boxes.

Updated BOOL T/F New information is available from the block.
T: New point cloud data has been processed.
F: No new point cloud data processed.

Areas (Array[100]U
32)

0-4294967295 The approximate cross-sectional area of objects within a zone.
[mm2]

Total_Valid_Points U32 0-4294967295 The number of valid LiDAR points. These obtain data when landing on objects. An
unusually low number may indicate issues. Invalid points include LiDAR points going into
the sky or dark surfaces, which are not detected by the LiDAR.
For ordered point clouds, this is the number of valid LiDAR points found within and close
to the zones. LiDAR points are counted multiple times if zones overlap.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Obstacle_Detect_Area Troubleshooting

The following table describes errors that could occur in the Obstacle_Detect_Area function block and
ways to fix them.

View the Obstacle_Detect_Area_Err signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect_Area Function Block

122 | © Danfoss | June 2025 AQ295075513101en-000109

Obstacle_Detect_Area_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

2 Not enough memory available to create thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

3 Thread timeout. There may be too much code creating a longer processing time.
Reduce the LiDAR resolution or delete other processing blocks.
See Reduce Processing Time on page 174. Turn the XM100 off, wait
a bit, and restart it.

4 Point cloud is unordered. This means the point cloud data
entering the block is unordered instead of ordered. Ordered LiDAR
points include X, Y, and Z coordinates, whereas unordered LiDAR
points have no coordinate data.

Change the point cloud data to ordered by reviewing previous
code that caused it to become unordered. If unordered data is
needed, use another block that does not need ordered point
cloud data, such as Obstacle_Detect.

5 Point cloud has invalid size. This means that the point cloud
dimension is so small it may only have one row or column.

Expand the parameters in previous blocks to have a larger point
cloud. Look especially in filtering blocks or the LiDAR code.

Other Errors and Fixes

Error Description How to Fix

Total_Valid_Points numbers are very low. These point numbers vary, but
they are based on the type of LiDAR. A high resolution LiDAR is expected
to get thousands of points, so a low number of 10 could indicate issues.

Check the LiDAR hardware to make sure nothing is blocking the scanner,
including dirt. See the LiDAR manufacturer's instructions for debugging
hardware issues.

Zones do not pick up objects. Check the parameters for the zones and adjust the numbers. Review the
coordinates of the LiDAR. Test the edges of the zones by moving an object
into and out of the zones.

The Areas output seems too small for the situation. If an object has a reflector close to or on it, then this block may report a
smaller cross-sectional area than it should. Move or adjust the reflector. Try
different LiDARs or adjust the LiDAR settings. Or, account for the reduced
Areas values in other code.

The machine mistakenly detects an object in the zone or the ground as an
object.

Adjust the zone height so Min_Height begins higher from the ground. The
LiDAR could detect the ground as an object if it pitches forward while the
machine travels over bumpy ground.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Obstacle_Detect_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 123

The Origin function block stores UTM coordinates of the machine's starting point, and uses this data to
calculate the relative position of the autonomous machine as it operates.

The origin can be set on startup. It can also be updated during application runtime, which can be useful
for repetitive algorithms, such as path coverage.

It is recommended to delay setting the origin location until valid position data (GNSS location) has
resolved to an accurate position. Save the origin to non-volatile memory to keep the origin between
power cycles.

Inputs

Inputs to the Origin function block are described.

Item Type Range Description [Unit]

SetOrigin BOOL T/F When true, the function block stores the current origin in the Para or UTM bus depending
on the CustomOrigin.
T: Update the origin being stored.
F: Origin being stored stays the same.

UTM BUS —— GNSS data using the UTM coordinate system.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The band that the UtmX and UtmY values are in.
ASCII values represent the letter of the band.

Zone U8 1-60 The zone that the UtmX and UtmY values are in.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Origin Function Block

124 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Updated BOOL T/F True when there is new data.
The stored values are updated only if no data has been stored yet.
CustomOrigin is False and Updated turns True.
T: New data is ready.
F: New data is not ready.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The Origin function block's operating characteristics are set by para bus input signals.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

UtmX U32 0-109 The UTM Easting (X) value of the origin.
Default: 0x20EBC948
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.
Default: 0x00000001

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.
Default: 0x6B7EAF74

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.
Default: 85
Unit: NA

Zone U8 1-60 The UTM zone where the UtmX and UtmY values are.
Default: 32
Unit: NA

CustomOrigin BOOL T/F Uses the custom origin values specified here in the Para bus when True.
T: Uses values in Para BUS.
F: Use values from the UTM BUS.
Default: True

Updated BOOL T/F True when there is new data.
The stored values are updated only if no data has been stored yet.
CustomOrigin is True and Updated turns True.
T: New data is ready.
F: New data is not ready.
Default: True

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Origin Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 125

Outputs

Outputs of the Origin function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.
0x8010: Input value is out of range.

Origin BUS —— Stores the UTM values for the origin.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The band that the UtmX and UtmY values are in.
ASCII values represent the letter of the band.

Zone U8 1-60 The UTM zone where the UtmX and UtmY values are.

Updated BOOL T/F True when new data is being stored for the origin.
T: New data is stored.
F: The origin has not changed.

OriginZone U8 1-60 The zone that the origin UTM is in.
This is the same value as the zone in the Origin BUS.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Origin Function Block

126 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Converter function block takes in data about a path and passes it to a data locker, in order for
other path blocks to access that data.

This block requires a license for A+ Advanced.

Path_Converter allows information about a machine's path to be entered directly into PLUS+1® GUIDE,
rather than driving a machine manually over a path to record the path information. Manually driving a
machine to record the path requires the Path_Recorder function block, and usually an application does
not need both types of blocks.

Path_Converter reads the parameters, origin, and information about the path a machine needs to follow
in the form of Bezier curves. It writes the path information into a data locker when the Convert pulse is
given. Path_Follower_Adv and Path_Extract function blocks use the converted information from the
data locker.

During path conversion and processing the converted path, the block might use a significant amount of
controller memory. It is recommended to have the machine standing still during the path conversion.

When using Path_Converter, the velocity sign must always stay positive or negative, and it must match
the driving direction where positive velocity means forward, and negative velocity means backwards.
Velocity could also be zero. If the machine needs to move both backwards and forwards, create multiple
paths. In that case, the path needs to reset before converting the path data again.

Application Information

Common function blocks that work with Path_Converter are Data_Lockers, Path_Follower_Adv, and
Path_Extract.

Path_Converter allows known path data to be hard-coded into a PLUS+1® GUIDE application, rather
than the machine physically driving a path and recording the data. Information about positions on the
given origin is required earlier in the application, as well as a Data_Lockers block. Some basic path
function block combinations include:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 127

1. Scenario one shows data entered into Path_Converter flowing into Path_Follower_Adv for the
machine to follow the path. Data lockers do not hold data over power cycles, so if a machine is
powered off, data must be converted again. One Data_Lockers block is required for all applications
but does not connect to anything.

2. Scenario two shows data entered into Path_Converter flowing into Path_Follower_Adv for the
machine to follow the path. Because the path is already known going into Path_Converter, it is not
necessary to place Path_Extract directly after it. Instead, place it after Path_Follower_Adv to visually
show trajectory data on a service tool screen or a display like a DM1000.

3. Scenario three shows two paths. Each path could have a Path_Converter block but need only one
Path_Follower_Adv block. Alternately, hard-code multiple paths into one Path_Converter where a
new path loop begins after Path_Follower_Adv processes the current path. Path_Follower_Adv

reads only one Path_Converter at a time.

If switching several paths into one Path_Converter, program Path_Converter to convert to load the
new path. Convert in Path_Converter and Load in Path_Follower_Adv can occur in the same loop
if Path_Follower_Adv executes after Path_Converter.

Additionally, place the Path_Converter function block:
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.
• After position and yaw information is obtained, such as after a Position_Filter function block.
• One or more times in an application if there are multiple paths. Switching several paths into one

Path_Converter saves processing power. A machine needs a new path every time its velocity
changes direction.

Example

The example shows the Path_Converter function block generating a predetermined path that the
Path_Follower_Adv then uses.

The example assumes code exists earlier in the application to establish a machine's position and origin.
See an overview of steps and explanations about what they achieve:

1. Add the Path_Converter and Path_Follower_Adv function blocks. Additionally, add a
Data_Lockers block if it does not already exist in the application. It can go on any page.

2. Create a pulse to convert the path data to a data locker. This connects directly to Convert to convert
the data.

3. Create a set pulse for Reset on Path_Converter. If Reset and Convert are both True in the same
program loop, the program only performs the Reset.

4. Connect the Origin to Path_Converter. The origin information comes from earlier in the application
and ties the machine's position to a local coordinate frame. Optionally, hard-code origin information.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

128 | © Danfoss | June 2025 AQ295075513101en-000109

5. Fill out the metadata about the path in the parameters bus, as well as the Path data. If there's a desire
to record a machine physically driving the path instead of putting numbers into PLUS+1® GUIDE, then
use the Path_Recorder function block instead of Path_Converter.

6. Check that Path_Converter had no errors when loading data to Path_Follower_Adv. If no errors
occur, trigger the Load signal on Path_Follower_Adv to take in the path information from a data
locker.

If using multiple paths in Path_Converter:

a. Trigger Convert on Path_Converter for the first path.

b. Trigger Load on Path_Follower_Adv for the first path. This can happen in the same loop as
triggering Convert as long as Path_Follower_Adv executes after Path_Converter.

c. Ensure the first path completed without issues by looking at the Path_Complete and State signals
in the Path_Follower_Adv function block. Fix any issues that might occur with Path_Converter

before converting the next path.

d. Repeat these steps for all other paths.

7. Connect a Set Pulse component to Reset on Path_Follower_Adv. This signal triggers the block to
go into a safe state and overrides the Load signal.

8. Connect Bez_Path to Path_Follower_Adv. The data flows to the Data_Lockers block automatically
while going between these two blocks.

9. Connect a Constant value to the Vel_X input to set the machine velocity manually, or use other data
to input the velocity of the machine. In this example, the Vel_X input is set to 0.

10. Connect position to Path_Follower_Adv, which uses the Position_Filter block or other code that
sends position information.

11. Create any desired Output data from Path_Follower_Adv. This example includes common data a
state machine uses, such as:

a) Notifying when the machine finishes the path in Path_Complete.

b) Recording how many times the machine followed the path in Loop_Count.

c) Displaying information about which waypoint the machine just drove through in
Current_Waypoint.

12. Connect Cmd_Curv to the machine's steering control system and Cmd_Vel to the machine's propel
control system. Path_Follower_Adv calculates curvature commands for the machine to use to stay
on the path.

13. Connect Path_Extract to visually see data about the path. Here, Path_Extract is connected so it can
look at the future path. See each function blocks' Pre-Made Service Tool Screens on page 25.

Inputs

The following table describes inputs required for the Path_Converter function block.

Array range for X in the ARRAY[X] types should be between 2 to 32,767. X is dynamic.

Item Type Range Description [Unit]

Convert BOOL T/F False to True transition starts the conversion of path arrays to a path type data locker.
T: The block state changes back to idle and checks for errors. If driving direction and
velocity sign match, the block goes into a read state from idle.
F: If there is a path in the path type data locker, then the block keeps updating the data
locker. If there is not a path in the data locker, then the block stays in an idle state.

If Reset and Convert are both True in the same program loop, the program only performs
the Reset.

Reset BOOL T/F False to True transition determines whether to stop the conversion after the path is
written to the data locker.
T: The block state changes back to idle, and no more data goes into a path type data
locker.
F: If there is a path in the path type data locker, then the block keeps updating the data
locker. If there is not a path in the data locker, then the block stays in an idle state.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 129

Item Type Range Description [Unit]

Origin BUS —— BUS containing UTM values of the path's origin. The data flows automatically to the path
type data locker. The items in this bus are placeholders and do not do anything.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 0x00000000-0x54
0BE400
This is the range of
the full U64 bit
number.

The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.
Default: 32

Path BUS —— A bus that contains options for the path and a way to define the path for the machine to
follow.

NumOfWaypoints U16 2-32767 The desired number of waypoints to be written into the data locker.
This takes affect when Convert transitions from False to True.
For optimal performance, limit the path lengths to less than 25000 waypoints.

Waypoint_X ARRAY[X]S32 -2147483648-2147
483647

The X position of the waypoint.
[mm]

Waypoint_Y ARRAY[X]S32 -2147483648-2147
483647

The Y position of the waypoint.
[mm]

Backward_Radius ARRAY[X]U32 0-4294967295 Distance from the waypoint to the backward control point.
Smaller radii yield sharper turns.
[mm]

Forward_Radius ARRAY[X]U32 0-4294967295 Distance from the waypoint to the forward control point.
Smaller radii yield sharper turns.
[mm]

Bearing ARRAY[X]S32 -72000-72000 Angle at which the machine goes through the waypoint. This uses the ENU convention
and the right-hand rule.
[0.01 degree]

Vel_X ARRAY[X]S32 -2147483648-2147
483647

Array of machine velocity for each waypoint.
This is the desired velocity and may not indicate the actual velocity while the machine
moves.
[mm/s]

Ancillary_Data ARRAY[X]U32 0-4294967295 Array of extra information attached to a specific waypoint. For example, this could be
information about temperature, the state of the machine, or directions to stop.

Forced_Waypoint ARRAY[X]U8 0-1 Indicates if a waypoint was forced in a path.
0: Waypoint is not forced.
1: Waypoint is forced.

Forward_Driving BOOL T/F Indicates whether the machine drives forward or reverse.
T: The machine drives in the direction of the machine face.
F: The machine drives in the direction opposite to the machine face (negative velocity). For
example, the machine starts at the beginning of the path and drives facing backwards to
the end of the path.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

130 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The following table describes parameters for the Path_Converter function block.

Item Type Range Description [Unit]

Para BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
This is data for the waypoints in the path recording.

Ancillary_Caption STRING[255] —— Describes the data in the Ancillary_Data signal.

Outputs

The following table describes outputs for the Path_Converter function block. The data could go into the
Path_Extract and Path_Follower_Adv function blocks.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Bez_Path S8 -1-99 Defines the ID of the path type data locker.

Internal Signals

The following table describes what is happening internally in the Path_Converter function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Path_Converter_Err U8 0-4 Indicates when an error occurred in the block functionality.
See Path_Converter Troubleshooting on page 131.

Path_Converter_State U8 0-2 The state of the Path_Converter function block.
0: Idle, waiting for the convert signal.
1: Read the input and write it to the path type data locker.
2: Conversion in progress.

Path_Converter Troubleshooting

The following table describes errors that could occur in the Path_Converter function block and ways to
fix them.

View the Path_Converter_Err signal on the Service Tool screen to see if any error numbers appear. In
PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

If your PLUS+1® application does not compile, times out, or stalls, it may be due to using large constant
arrays of waypoints. Try disabling the Checkpoints page for Path_Converter.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 131

Path_Converter_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 The velocity sign changed direction from positive to negative or
vice versa. Array numbers must be all positive or all negative, not
mixed. Zero works for either positive or negative.

Verify the velocity sign is constant and does not switch between
negative and positive.

2 Wrong driving direction. The velocity sign must be constant and
match the Forward_Driving signal.

Verify that if Forward_Driving is true, velocity is positive or zero. If
false, velocity is negative or zero.

3 Input array sizes are not equal in length. Check that array inputs have the same length.

4 The signal NumOfWaypoints is larger than the input arrays,
creating the wrong number of waypoints.

Verify the size of input arrays is less than the expected
NumOfWaypoints value.

Turn off checkpoints if the application does not compile.

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Converter Function Block

132 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Extract function block reads Bezier path information from a data locker and displays up to 50
waypoints of data about a path.

This block requires a license for A+ Advanced.

This block shows data from a data locker, which could be visually seen on a service tool screen. Use the
pre-made service tool screen, or pull the signals into a service tool individually. The data extracted could
be used in other blocks or parts of the application. Additionally, create a display of the information on a
piece of hardware such as the DM1000.

Out of the path blocks, Path_Extract helps but is not required to record a path or have a machine follow
it.

Place this block after path information is gathered, which could be from Path_Recorder,
Path_Converter, Path_Loader, or Path_Follower_Adv function blocks. Confirm a Data_Lockers block
exists somewhere in the application.

The Updated flag stays true as long as there is valid data in the data locker. It does not change if new
data is available. It only goes false if invalid or no data comes.

Positioning for this block is measured with a default assuming the GNSS antenna is mounted at the
steering point of the machine. For example, this could be the rear axle of a front wheel steer Ackermann
machine. If the antenna on the machine is located in a different area, code needs to be written to
translate it to the steering point. The path waypoints correlate with the front wheels and may not match
the GNSS during turns.

Application Information

Common function blocks used with Path_Extract are Path_Converter, Path_Recorder, Path_Loader,
Data_Lockers, and Path_Follower_Adv.

The Path_Extract function block visually displays data about the path on a service tool screen or a
hardware display, such as the DM1000. It is helpful but not necessary in an application. Some basic path
function block combinations include:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Extract Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 133

1. Scenario 1 shows Path_Recorder recording the path. Path_Extract displays information from
Path_Recorder onto a Service Tool screen or other hardware display.

2. Scenario 2 shows a Path_Recorder function block recording the path then writing it to a JSON file.
Then, Path_Loader reads the path from the JSON file and transmits it to a Service Tool screen or a
hardware display using the Path_Extract(1) function block. Path_Follower_Adv calculates the
remaining path then transmits it to a Service Tool screen or a hardware display using the
Path_Extract(2) function block.

3. Scenario 3 shows data entered into Path_Converter flowing into Path_Follower_Adv for the
machine to follow the path. Because the path is already known going into Path_Converter, it is not
necessary to place Path_Extract directly after it. Instead, place it after Path_Follower_Adv to show
what part of the path is left to drive. This appears on a service tool screen or display piece of
hardware.

Additionally, place the Path_Extract function block:
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.
• After any path function block to visually see what information those blocks are putting into a data

locker. Many Path_Extract blocks could exist in an application. If multiple Path_Loader and
Path_Converter function blocks exist, place Path_Extract after each one to see what is in each
block.

• Do not place Path_Extract at the start of the path block flow because there will not be any data to
see. It is usually unnecessary for Path_Extract to come directly after Path_Converter.

Example

The Path_Extract function block is in several examples with other path blocks.

See Example on page 157 with the Path_Recorder function block.

See Example on page 128 with the Path_Converter function block.

See Example - One Path on page 150 with one Path_Loader function block.

See Example - Multiple Paths on page 151 with multiple Path_Loader function blocks.

All the examples include the Path_Follower_Adv function block. Each function block includes Pre-Made

Service Tool Screens on page 25.

Inputs

The following table describes inputs required for the Path_Extract function block. Most of this data
comes from the Path_Loader and Path_Recorder function blocks.

Item Type Range Description [Unit]

Bez_Path S8 -1-99 Defines the ID of the path type data locker.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Extract Function Block

134 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The following table describes parameters for the Path_Extract function block.

Item Type Range Description [Unit]

Waypoint_Index U16 0-65535 The array index of the first waypoint read from the path.
For example, to start the array index at waypoint 15, enter 15 here.

Outputs

The following table describes outputs for the Path_Extract function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Metadata BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
Date and time information comes from Path Recorder or Path Converter function blocks.

Ancillary_Caption STRING[255] —— Describes the data in the Ancillary_Data signal.

Path BUS —— A bus that contains options for the path and a way to define the path for the machine to
follow.

Updated BOOL T/F Indicates if new path data is extracted from the Bez_Path input.
T: New path data is extracted. This stays True even if the Bez_Path data changes, as long
as it is still valid.
F: No new path data available.

Forward_Driving BOOL T/F Indicates whether the machine drives forward or reverse.
T: Machine drives in the direction of the machine face.
F: The machine drives in the direction opposite to the machine face (negative velocity). For
example, the machine starts at the beginning of the path and drives facing backwards to
the end of the path.

NumOfWaypoints U16 0-50 The number of waypoints in the output array.

Waypoint_X (ARRAY[X]S3
2)

-2147483648-2147
483647

The X position of the waypoint.
[mm]

Waypoint_Y (ARRAY[X]S3
2)

-2147483648-2147
483647

The Y position of the waypoint.
[mm]

Backward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the backward control point.
Smaller radii yield sharper turns.
[mm]

Forward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the forward control point.
Smaller radii yield sharper turns.
[mm]

Bearing (ARRAY[50]S
32)

-72000-72000 Angle at which the machine goes through the waypoint. This uses the ENU convention
and the right-hand rule.
[0.01 degree]

Vel_X (ARRAY[50]S
32)

-2147483648-2147
483647

Array of machine velocity for each waypoint.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Extract Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 135

Item Type Range Description [Unit]

Ancillary_Data (ARRAY[X]U3
2)

0-4294967295 Array of extra information attached to a specific waypoint. For example, this could be
information about temperature, the state of the machine, or directions to stop.

Forced_Waypoint (ARRAY[50]U
8)

0-1 Indicates if a waypoint is forced in a path.
0: Waypoint is not forced.
1: Waypoint is forced.

Origin BUS —— BUS containing UTM values of the path's origin.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.

UtmY U32 0-10¹⁰ The UTM Northing (Y) value of the origin.
This uses two U32 types, equivalent to a U64.

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 0x00000000-0x54
0BE400
This is the range of
the full U64 bit
number.

The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

Internal Signals

The following table describes what is happening internally in the Path_Extract function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Path_Extract_Err U8 0-2 Indicates when an error occurred in the block functionality.
See Path_Extract Troubleshooting on page 136.

Total_Num_Waypoint

s

U16 0-65535 Total number of waypoints stored inside of the data locker about the path. Only 50
waypoints are loaded at a time, so this allows visualization to how many waypoints exist
and when the end of the path is reached.

Path_Extract Troubleshooting

The following table describes errors that could occur in the Path_Extract function block and ways to fix
them. View the Path_Extract_Err signal on the Service Tool screen to see if any error numbers appear. In
PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Path_Extract_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 The string in the metadata is longer than expected and invalid.
The Data_Lockers block does not have enough room for the
metadata.

Confirm each metadata string is less than 255 characters.

2 The Waypoint_Index value is greater or equal in length to the
path, making the index invalid.

Enter a valid Waypoint_Index signal.

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Extract Function Block

136 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Follower function block compares the current machine position to the desired path and
provides a steering curvature command to bring the machine to the path.

Path_Follower can be used on XM100 or MC controllers, add sections of paths onto a current path, and
does not require a LiDAR.

Paths in Path_Follower are made up of one or more connected Bézier curves, which connect the
waypoints to make the path. See Navigation on page 21 for information about Bézier curves.

By using Bézier curves, the number of points used to define the path is reduced. This lowers computation
time and needed memory, while retaining the ability to navigate a complex path.

Positioning for this block is measured with a default assuming the GNSS antenna is mounted at the
steering point of the machine. For example, this could be the rear axle of a front wheel steer Ackermann
machine. If the antenna on the machine is located in a different area, code needs to be written to
translate it to the steering point. The path waypoints correlate with the front wheels and may not match
the GNSS during turns.

Path_Follower uses a configurable look-ahead distance that determines how the machine calculates its
steering correction commands to reach the intended path. It also allows for looping and non-looping
paths and contains a search feature to locate the nearest point on the path when the machine is not on
the path.

Paths can be loaded as a fixed path when the machine starts or can be added dynamically.
Path_Follower outputs tracking errors relative to the path as well as a curvature, which steers the
machine onto the path. The machine aims approximately for a point a certain distance ahead of itself on
the path, known as Lookahead_Dist in the block. The block outputs a curvature command to steer the
machine to the path, which can be limited by the Max_Curvature parameter to give smoother driving.

As a machine travels along the path, it passes through the Current_Waypoint, which is the most recently
passed waypoint. Whenever the NumOfWaypoints is greater than zero, the waypoint input is added to
the path. For example, if the machine drives in a circle and is told to add four waypoints, it will keep
adding four waypoints and continue driving in the circle. Only append the waypoints one time to avoid
going in a continuous loop. Additionally, Target_Spacing, which refers to segments between waypoints
on the path, will always have at least four spaces between each waypoint. As the machine passes through
a waypoint, if looping is False, the previous waypoint is discarded and one more waypoint slot becomes
available.

Reverse means the machine drives the path starting from the end of the path and moving toward the
start of the path. This Reverse behaves differently than the other Autonomous Control Library path
blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 137

If there's a straight line and a point with a tiny radius that is wrong, the bearing entered might be
pointing the opposite way. Huge radii on a straight line could negatively affect target spacing and is not
recommended. Radius should be small or zero for straight lines.

When the machine goes through the last waypoint, it completes the path if it is a non-looping path. The
machine's curvature commands will keep targeting a straight line at the final waypoint's bearing. This
block is not intended to be used after Path_Complete is True.

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

Application Information

Common function blocks that work with Path_Follower are Curv_To_Angle, Position_Filter, and other
GNSS function blocks. There will always be two parallel streams of path and machine position data going
into Path_Follower, and information outputs to the machine wheels.

Path_Follower usually needs position information from odometry, as well as GNSS function blocks
Origin, Relative_Pos, UTM_Conv, and UTM_Conv_Zone.

1. Scenario one shows machine position information obtained through odometry and GNSS function
block combinations, which flow into Position_Filter to determine the machine's position. The
machine's position constantly updates. A second stream of data for path information is loaded once
into the application as constants. Path_Follower reads position information as it travels along the
path, and path information does not append to the end of the path. Information flows into
Curv_To_Angle, which tell the machine's wheels to turn when it reaches certain areas of the path.

2. Scenario two shows LiDAR hardware finding a target for a machine to drive toward. LiDAR code
detects the environment around the machine, and custom code figures out where the machine is
located before passing the information to Position_Filter. Position_Filter could use an object for
positioning, like a post. Position information is constantly updating, but path information is
procedurally generated. Some part of the path is known, and then how to navigate the path changes.
The second stream of data for the path comes from Edge_Detect following an edge in the
environment that the machine needs to drive toward. That information passes to
Two_Point_Planner, which generates an optimal path to a destination. Both position and path
information pass to Path_Follower for the machine to follow a path. Information flows into
Curv_To_Angle, which tell the machine's wheels to turn when it reaches certain areas of the path.

3. Scenario three shows a machine following another machine. The lead machine broadcasts its position
by a wireless link to the machine following it, and then the second machine appends those waypoints
to its path to drive toward like a breadcrumb trail. In this case, GNSS is likely used for localization on
both machines and need to use the same system. Both position and path information pass to
Path_Follower for the machine to follow a path. Information flows into Curv_To_Angle, which tell
the machine's wheels to turn when it reaches certain areas of the path.

Additionally, place the Path_Follower function block:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

138 | © Danfoss | June 2025 AQ295075513101en-000109

• After position data is collected. This is either after GNSS and odometry function blocks, or after LiDAR
code like the Ouster_LiDAR function block. If using a LiDAR, include one Data_Lockers block,
version 1.11 or later, which can be on any page in the application.

• After the Position_Filter function block.
• After path data is collected or created.
• Before the Curv_To_Angle function block if using an Ackermann machine.

Inputs

Inputs to the Path_Follower function block are described.

Array range for X in the ARRAY[X] types should be between 1 and 50. X is dynamic.

Item Type Range Description [Unit]

Pos BUS —— A bus that contains position and orientation data for the machine.

X S32 -2147483648-2147
483647

The X position of the machine.
[mm]

Y S32 -2147483648-2147
483647

The Y position of the machine.
[mm]

Yaw S32 -72000-72000 The yaw of the machine.
This uses the ENU convention and the right hand rule.
[0.01 degree]

Path BUS —— A bus that contains options for the path and a way to define the path for the machine to
follow.

Waypoint_X (ARRAY[X]S3
2)

-2147483648-2147
483647

The X position of the waypoint.
[mm]

Waypoint_Y (ARRAY[X]S3
2)

-2147483648-2147
483647

The Y position of the waypoint.
[mm]

Bearing (ARRAY[X]S3
2)

-72000-72000 Angle at which the machine goes through the waypoint. This uses the ENU convention
and the right-hand rule.
[0.01 degree]

Forward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the forward control point.
Smaller radii yield sharper turns.
[mm]

Backward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the backward control point.
Smaller radii yield sharper turns.
[mm]

StartingWaypoint U8 0-49 The index in the array that has the first waypoint to be added to this loop.
If Starting Waypoint + NumOfWaypoints

is greater than 50, then the index of waypoints wraps back to 0.

Intended for use with ring buffers, normally set to 0.

NumOfWaypoints U8 0-50 The number of waypoints to add to this loop.
Whenever the number of waypoints is greater than zero, the waypoints are added to the
path. Set this to zero to not add waypoints.
Confirm with output signal NumOfWaypointsAdded.

Reverse BOOL T/F Specifies the order that waypoints are added to the path.
T: The waypoints are added to the path in reverse order. 180 degrees are added to the
bearing. Backward and forward radii are swapped. The machine drives the path from the
end of the path to the start.
F: The waypoints are added based on their current order in the array.

This Reverse behaves differently than Forward_Driving in the other path blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 139

Item Type Range Description [Unit]

Search_Path BOOL T/F Specifies if the path is searched.
T: Searches the entire path to find the nearest point to the machine to navigate toward. If
Tracking_Error is less than two times the Lookahead_Dist, search is not performed.
F: Does not search path. Follows the path from the beginning to the end.

Loop_Path BOOL T/F Set True to loop the path. This is only updated during the first loop or when Reset is True.
Cannot have more than 50 waypoints.
T: The path keeps looping.
F: The path is only done once.

Target_Spacing U16 1-65535 Accuracy of the interpolation of the path segments.
Smaller values increase the accuracy but also increase the processing time.
This is only updated during the first loop or when Reset is True.
Segments are split into at least 4 steps, and at most 1000 steps, even if the value of
Target_Spacing specifies otherwise.
[mm]

Target_Spacing requires four spaces here but other path blocks do not require this.

Reset BOOL T/F Clears the current path and stores the settings for the new path.
T: Clears the path and stores the value for Loop_Path and Target_Spacing for the next
path.
F: Does not clear the path.

Chkpt BOOL —— Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The following table describes parameters for the Path_Follower function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Lookahead_Dist U16 1-65535 The distance which the machine travels to get to the path. Shorter distances are more
accurate but the system is less stable.
The Lookahead_Dist should be larger than the wheelbase and Target_Spacing less than
a third of Lookahead_Dist.
[mm]
Default: 3000

Max_Curv S32 1-2147483647 The limit for the Cmd_Curv sent to the machine to drive through the lookahead point.
This smooths the curve the machine takes.
Default: 2147483647
[0.01/km]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

140 | © Danfoss | June 2025 AQ295075513101en-000109

Outputs

The following table describes outputs of the Path_Follower function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Bitwise code where multiple items can be reported at a time.
*Non-standard
0x0000: Status OK.
0x0001: The path is empty. Less than two points are added to the path.
0x0002: It took too long to find the lookahead point. Target spacing is too small or the
machine is going too fast.
0x0004: It took too long to find the nearest point to the machine.
Target spacing is too small or the machine is moving too fast.
0x0008: Path is too small or lookahead distance is too big.
0x0010: At least one parameter is out of range.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.
0x0004: Size of the input path arrays do not match.
0x0008: NumOfWaypoints is bigger than the size of the input path arrays.

Output BUS —— ——

Cmd_Curv S32 -2147483648-2147
483647

The command of curvature needed to get to the Lookahead_Dist.
Positive values are left curves.
Negative values are right curves.
[0.01/km]

If the Angle_Error is greater than 90 degrees, the Cmd_Curv value equals Max_Curv. The
range of this block's output is limited by the Max_Curv parameter.

Path_Yaw S32 -18000-18000 The bearing of the path at its nearest interpolated point to the machine.
[0.01 degree]

Tracking_Error S32 -2147483648-2147
483647

The orthogonal distance from the current position and the nearest interpolated point
from the Bezier curve of the path.
Negative values mean the machine is to the left of the path.
Positive values mean the machine is to the right of the path.
[mm]

Angle_Error S32 -2147483648-2147
483647

The difference between the machine's bearing and the bearing of the nearest interpolated
point on the path.
Negative values mean you are rotated to the left compared to the path.
Positive values mean you are rotated to the right compared to the path.
[0.01 degree]

If the Angle_Error is greater than 90 degrees, Cmd_Curv goes to the Max_Curv.

NumOfWaypointsAdd

ed

U8 0-50 The number of waypoints successfully added to the path during this loop.

Available_Waypoints U8 0-50 The number of waypoints that can still be added to the path.
For non-looping paths, this value increases as waypoints prior to the Current_Waypoint

are consumed and are no longer used for path following or searching.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 141

Item Type Range Description [Unit]

Current_Waypoint U32 0-3276750 The waypoint that the machine most recently passed.
For looping paths this value stays between 0 and (49 minus Available_Waypoints) that
can still be added to the path.
For non-looping paths this value keeps increasing as the machine passes waypoints.
Before reaching the starting waypoint, which is Waypoint[0], the signal outputs
Waypoint[0]. The second waypoint is Waypoint[1].

This Current_Waypoint behaves differently than the Current_Waypoint in other path
blocks.

Loop_Count U16 0-65535 The number of times the machine completed the full path. If Loop_Path is False, this
output is always zero.

Path_Complete BOOL T/F True when the current non-looping path is complete.
This never goes True for looping paths.
T: The current path is complete. The machine passed through the last Current_Waypoint.
F: The current path is not complete.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower Function Block

142 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Follower_Adv function block uses data for a machine to follow a path. It usually comes at the
end of a series of other path blocks.

This block requires a license for A+ Advanced.

Positioning for this block is measured with a default assuming the GNSS antenna is mounted at the
steering point of the machine. For example, this could be the rear axle of a front wheel steer Ackermann
machine. If the antenna on the machine is located in a different area, code needs to be written to
translate it to the steering point. The path waypoints correlate with the front wheels and may not match
the GNSS during turns.

Path_Follower_Adv is optimized for Ackermann steer machines. It works with other steering types but
may not be as accurate and need further tuning.

Path_Follower_Adv comes after other path blocks obtained data about a path. If the machine is off the
path, it calculates a path to return the machine to the original path. It actively consumes data from the
Bez_Path outputs of other blocks which went to a data locker. If the data in this locker changes before
Path_Follower_Adv finishes following the current path, it will stop following the path. For example, if
the data locker ID changes from 1 to 2 when multiple paths are run together, the machine stops
following the path and goes into a safe state. Use the Load signal to load the new path data and start
moving on the path again. Or, use the Reset signal to override the path and put the machine in an idle
state. Activating Reset and Load at the same time resets the function block and does not load new data.

Start_Distance refers to how close the machine needs to be to a path to start. The machine follows the
path until the last waypoint, and if it is told to loop, then it goes on the path again. If Search_Path is True,
then the machine navigates to the closest waypoint on the path and follows it from there if starting off
the path. If False, the machine navigates back to the start of the path if it gets off the path. If the deviation
from the original path is greater than Lost_Distance, then Path_Follower_Adv generates a custom path
and temporarily drops the original path to follow the new path. This new path is visually available in
Bez_Path_Out on a service tool screen. The new custom path still considers the machine kinematics, so if
returning to the old path requires additional maneuvering, the machine does it.

Target_Spacing refers to the number of points between waypoints, which indicates how far apart
waypoints should be from each other. Curves may need waypoints closer together. If the target spacing is
too small, Path_Follower_Adv follows the path but automatically changes the parameter to buffer the
turn. The input checkpoint will not change. Max_Curvature is machine dependent and defines how
tight the curve could be. Control_Gain focuses on the machine orientation to the path and how close
the machine is to the path. If control gain is low, it needs the same orientation. If control gain is too high,
the machine needs to be as close to the path as possible and ends up oscillating around the path. This
depends on the size of the machine.

If decelerating too fast, the machine may not stop fully. If a machine cannot decelerate fast enough, it
may overshoot the waypoint and start ramping to the desired velocity of the next waypoint. Monitor the
state of the block in the Internal Signals on the service tool screen.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 143

Application Information

Common function blocks used with Path_Follower_Adv are Path_Converter, Path_Recorder,
Path_Loader, Data_Lockers, and Path_Extract.

The Path_Follower_Adv function block consumes data about the path from a data locker so a machine
can follow the path. Path_Follower_Adv is usually at or near the end of any path flow. Some basic path
function block combinations include:

1. Scenario one shows information from the recorded path flowing into Path_Follower_Adv for a
machine to follow the recorded route immediately. Do this for repeatable tasks that need a new path
if the ECU loses power. Turning off the machine loses recorded information. One Data_Lockers block
is required for all applications but does not connect to anything.

2. Scenario two shows data entered into Path_Converter flowing into Path_Follower_Adv for the
machine to follow the path. Because the path is already known going into Path_Converter, it is not
necessary to place Path_Extract directly after it. Instead, place it after Path_Follower_Adv to show
what part of the path is left to drive. This appears on a service tool screen or display piece of
hardware.

3. Scenario three shows one Path_Recorder block recording two paths with their own JSON files.
Path_Recorder is used twice. The first Path_Loader loads one path's JSON file to a data locker, and
the second Path_Loader loads the second path's JSON file to a different data locker. However, these
data lockers are located within one Data_Lockers block. One Path_Follower_Adv block uses
information from the data lockers for the machine to drive multiple paths. Add in logic for the paths
to drive one after each other.

Additionally, place the Path_Follower_Adv function block:
• Only once in each application, even though multiple paths could exist.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.

Example

The Path_Follower_Adv function block is in several examples with other path blocks.

See Example on page 157 with the Path_Recorder function block.

See Example on page 128 with the Path_Converter function block.

See Example - One Path on page 150 with one Path_Loader function block.

See Example - Multiple Paths on page 151 with multiple Path_Loader function blocks.

All the examples include the Path_Extract function block. Each function block includes Pre-Made Service

Tool Screens on page 25.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

144 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The following table describes inputs required for the Path_Follower_Adv function block.

Item Type Range Description [Unit]

Bez_Path_In S8 -1-99 Defines the ID of the path type data locker.

Load BOOL T/F False to True transition loads the path to Path_Follower_Adv.
T: Clears the current path, stores the new path, and sets the machine state to idle. Machine
velocity and output curvature commands are both zero.
F: If already following a path, the machine continues following it without loading new
path data. If the machine is not following a path, it will not load data.

Reset BOOL T/F False to True transition resets the path the machine follows.
T: Clears the current path data and sets the machine into an idle state. The machine
velocity and output curvature command are both zero.
F: If already following a path, the machine continues following it without resetting. If the
machine is not following a path, it cannot reset.

This is like an emergency shutdown and not the same as Reset in Path_Converter or
Path_Recorder.

Vel_X S32 -2147483648-2147
483647

Velocity of the machine.
[mm/s]

Pos BUS —— Position and coordinate signals coming from the Position_Filter function block.

X S32 -2147483648-2147
483647

Current X position of the machine location.
[mm]

Y S32 -2147483648-2147
483647

Current Y position of the machine location.
[mm]

Yaw S32 -72000-72000 The angle used to describe the machine's heading using the ENU (East-North-Up)
reference frame.
[0.01 degree]

Parameters

The following table describes parameters for the Path_Follower_Adv function block.

Item Type Range Description [Unit]

Search_Path BOOL T/F Specifies if the machine starts following the path from the closest waypoint.
T: The machine finds the closest waypoint to follow the path.
F: The machine follows the path from the starting waypoint.

Loop_Path BOOL T/F After completing the path, determines if the machine follows the path again in a loop.
T: The machine follows the path again from the starting waypoint and tracks new data.
F: The machine does not follow the path in a loop.

Front_Wheel_Steer BOOL T/F Determines whether the machine uses front wheel steering.
T: The machine steers from the front wheels.
F: The machine does not steer from the front wheels.

Target_Spacing U16 1-65535 Distance between waypoints on the path. Too much distance could make the machine
move away from the path, but too small distance could make the machine shake trying to
stay on the path. If the spacing is too small, this value will be automatically overwritten to
buffer turns.
[mm]
Default: 200

This Target_Spacing behaves differently than for Path_Follower.

Max_Curv S32 6105-2147483647 The maximum curvature command the machine accepts. Greater values allow sharper
turns, and smaller values allow wide turns.
Default: 100000
0.01/km

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 145

Item Type Range Description [Unit]

Control_Gain U16 1-65535 Tunes the accuracy of tracking. This depends on wheelbase, curve, loop time, position
estimate accuracy, and steering unit response time. Greater values lead to smaller tracking
errors but decrease the machine's stability. Smaller values lead to inaccurate tracking but
better machine stability.
Default: 1000

Wheelbase U16 1-20000 The distance between the centers of the front and rear wheels.
[mm]
Default: 5000

Lost_Distance U16 4*(10^8 /
Max_Curv) to
65535

The maximum distance a machine is allowed from the original path before it needs to
return to the path. For example, if it moves around an obstacle.
[mm]
Default: 5000

Start_Distance U16 1-65535 The desired distance between the machine and the starting waypoint, which is
Waypoint[0] in GUIDE. The second waypoint is Waypoint[1]. If the machine does not start
at Waypoint[0], GUIDE reads Waypoint[-1] until the machine reaches Waypoint[0].
Search_Path does not affect this parameter. The distance is measured from both the rear
and front axle of the machine, and the smaller distance is considered.
Default: 500
[mm]

Outputs

The following table describes outputs for the Path_Follower_Adv function block. This block comes last
in the path block series, but data could output to Path_Extract.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Output BUS —— BUS containing information about machine errors, curvature, and the path.

Cmd_Curv S32 -2147483648-2147
483647

Curvature command for the machine to follow the path. Negative values indicate the
machine turns right, and positive values indicate the machine turns left.
[0.01/km]

Cmd_Vel S32 -2147483648-2147
483647

Velocity command for the machine to follow the path.
[mm/s]

Tracking_Err S32 -2147483648-2147
483647

This shows how far away the machine is from the path by measuring the distance
between the machine's position and the nearest interpolated point on the path. The
tracking error is perpendicular to the path. Negative values mean the path is on the
machine's left side, and positive values mean right side.
[mm]

Angle_Err S32 -18000-18000 The difference between the machine's yaw and the yaw of the closest interpolated point
on the path. For example, if the machine's yaw is 100 and the path's yaw is 90, the angle
error is 10. Negative values indicate the machine is pointed to the left of the path, and
positive values indicate the machine pointed to the right.
[0.01 degree]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

146 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Current_Waypoint S32 -1-65535 The waypoint that the machine most recently passed.
Before reaching the starting waypoint, which is Waypoint[0], the signal outputs
Waypoint[-1]. The second waypoint is Waypoint[1].

This Current_Waypoint behaves differently than the Current_Waypoint in other path
blocks.

Loop_Count U16 0-65535 The number of times the machine completed the full path. If Loop_Path is False, this
output is always zero.

Path_Complete BOOL T/F Indicates when the machine passes through the final waypoint, completing the path.
T: The current path is complete. The machine passed through the last Current_Waypoint.
F: The current path is not complete.
This output is always False if Loop_Path is True.

Bez_Path_Out S8 -1-99 This contains future path information. If the machine approaches the starting waypoint or
gets lost, the ID points to a data locker that contains the desired path the machine will
follow to get back to the original path and start the tracking. If -1 is passed into
Bez_Path_In, this parameter holds the last available path.

Internal Signals

The following table describes what is happening internally in the Path_Follower_Adv function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Path_Follower_Adv_E

rr

U8 0-7 Indicates when an error occurred in the block functionality.
See Path_Follwer_Adv Troubleshooting on page 148.

Target_Index U16 0-1000 The index of the interpolated point on the path segment the machine is currently
following. Look here to see if an issue happened at a certain index number. This number
should go up and not stall unless the machine stopped.

Search_Progress U16 0-10000 Indicates the percentage of the path searched to find the closest interpolated point upon
startup. It is non-zero only if Search_Path is True.
If searching a long path, monitor this before the machine moves to confirm that
Search_Path finished.
[0.01%]

Distance_To_Start U32 0-4294967295 The distance from the starting waypoint. Once the machine is within the Start_Distance

range, its value will be zero.
Monitor this value to see if the machine has a hard time finding the start of the path.
[mm]

Ancillary_Prev U32 0-4294967295 Extra information attached to the waypoint that has been passed last by the machine.
Look here to see if data was triggered or came through. This data originally comes from
Path_Converter or Path_Recorder.

Ancillary_Next U32 0-4294967295 Extra information attached to the next waypoint the machine is driving towards.
Look here to see if data was triggered or came through. This data originally comes from
Path_Converter or Path_Recorder.

State U8 0-6 The state of the Path_Follower_Adv function block.
0: Idle, waiting for reset.
1: Finding the starting waypoint.
2: Following the shortest path to get to the starting waypoint.
3: Following the path.
4: Lost and trying to get back to the path.
5: Path finished when Loop_Path is False. Outputs zero velocity and curvature command.
6: Safe, no velocity and curvature command at the output, waiting for a False to True
transition on Load and Reset to be False.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 147

Path_Follwer_Adv Troubleshooting

The following table describes errors that could occur in the Path_Follower_Adv function block, as well
as ways to fix them. View the Path_Follower_Adv_Err signal on the Service Tool screen to see if any
error numbers appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals

column.

Path_Follower_Adv_Err Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. Turn the controller off and on, or use less code in the application.

2 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

3 A background thread took more than 500 milliseconds to process
the data. However, a valid output is still coming out.

Turn the controller off and on, reduce the amount of points
processed, or record a shorter path.

4 Less than two waypoints exist on the path. There needs to be a
starting waypoint plus two more.

Verify the correct path is used. Add more waypoints, if needed.

5 The Target_Spacing value is too small. The block still runs but
tries to modify the parameter internally, creating a lower
resolution.

Increase the Target_Spacing value, or break the path into
multiple smaller paths. Target_Spacing needs at least two
waypoints.

6 The machine cannot navigate to the starting waypoint from the
JSON file.

Adjust the Start_Distance signal.

7 The path is recorded with Forward_Driving programmed in one
direction, but the machine is manually driven in the opposite
direction. The machine must follow the path in the recorded
direction.

Record a new path in the desired direction, and manually drive the
machine in the same direction of the recorded path.

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Follower_Adv Function Block

148 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Loader function block reads a JSON file, which contains information about a path a machine
follows. This path is then uploaded into the Data_Lockers block for other blocks to access.

This block requires a license for A+ Advanced. It also requires hardware compatible with the media file
system, such as the XM100. The minimum HWD version must be greater than 3.21.

Positioning for this block is measured with a default assuming the GNSS antenna is mounted at the
steering point of the machine. For example, this could be the rear axle of a front wheel steer Ackermann
machine. If the antenna on the machine is located in a different area, code needs to be written to
translate it to the steering point. The path waypoints correlate with the front wheels and may not match
the GNSS during turns.

Path_Loader requires a JSON file produced by the Path_Recorder function block. It reads the data from
a JSON file, optionally checks that the data is not corrupt, and then loads it to Data_Lockers for other
blocks in the application to use. It is highly recommended to enable parameter Verify_CRC to check for
corrupted data, otherwise the block could load bad data. Data is checked by Cyclical Redundancy Check
(CRC), using the MD5 protocol.

If a JSON file needs modification, make any changes to it and save a new MD5. Then, use the new JSON
file in Path_Loader. See Modify JSON and Update MD5 on page 27.

Path_Loader outputs the origin data contained in the JSON file. Outputs include the status of the
hardware tier, faults in PLUS+1® GUIDE, and other errors that occurred. Then, Path_Loader indicates
when the path has loaded into Data_Lockers on the Finished output. Path_Loader checks that the
JSON file exists, the data is intact, and optionally checks that the data is not corrupted if the Verify_CRC

parameter is true. If something does not check out, an error signal is indicated in the Error_File output.
This error file can be checked on the Checkpoints page or service tool screen.

If the machine needs to move in both forward and backward directions, create multiple paths so the
machine goes in one direction per path. Each path needs a Path_Loader function block to upload the
path data to its own data locker within the Data_Lockers block.

Application Information

Common function blocks that work with Path_Loader are Path_Extract, Path_Recorder, Data_Lockers,
and Path_Follower_Adv.

The Path_Loader function block uploads the JSON file with path data gathered from the Path_Recorder

function block into a Data_Lockers block, that could then be consumed by other blocks. Information
about the position of the machine is required earlier in the application. Some basic path function block
combinations are the following:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 149

1. Scenario one shows Path_Recorder recording the path to a JSON file stored on the controller.
Path_Loader loads the JSON file information to a data locker, and then Path_Follower_Adv uses the
path data for the machine to follow the path. One Data_Lockers block is required for all applications
but does not connect to anything.

2. Scenario two shows one Path_Recorder recording two paths with their own JSON files. The first
Path_Loader loads one path's JSON file to a data locker, and the second Path_Loader loads the
second path's JSON file to a different data locker. However, these data lockers are located within one
Data_Lockers block. One Path_Follower_Adv block uses information from the data lockers for the
machine to drive multiple paths. Add in logic for the paths to drive one after each other.

3. Scenario three shows Path_Loader reading the path from the JSON file and transmitting it to a
Service Tool screen or a hardware display using Path_Extract. The JSON file existed with all the path
information recorded from a previous time. Then, Path_Follower_Adv uses the path data for the
machine to follow the path.

Additionally, place the Path_Loader function block:
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.
• After Path_Recorder if it is required to create the JSON file. If a JSON file exists from a different

application, that block is not required.
• After position and yaw information is obtained, such as after a Position_Filter function block.
• Multiple times in an application if there are many paths. There should be a Path_Loader block for

each path, and a machine needs a new path if it changes between forward and reverse velocity.

Example - One Path

This example shows the Path_Loader function block uploading information to a data locker for one
path, and the Path_Follower_Adv function block uses that data for a machine to follow the path. The
Path_Extract function block visually displays the uploaded path information.

Set up GNSS and positioning code earlier in the application, which could use the Position Filter function
block.

The example assumes code exists earlier in the application to establish a machine's position. See an
overview of steps and explanations about what they achieve:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

150 | © Danfoss | June 2025 AQ295075513101en-000109

1. Add the Path_Loader, Path_Extract, and Path_Follower_Adv function blocks. Additionally, add a
Data_Lockers block if it does not already exist in the application. It can go on any page.

2. Connect the JSON's file path to the signal Filename. Here, the file name is '/media/p1user/
Recorded_Path1.json'. Path_Recorder generates the JSON file, which is stored on a local file directory
such as the XM100.

3. Create a pulse signal to Read the JSON file. This pulse triggers the block to read the file and write the
information to a data locker.

4. Create logic for Path_Follower_Adv to access the information loaded to a data locker. In this
example, the logic checks that no errors occurred from Path_Loader loading the JSON file to the data
locker, and it finished writing the information to a data locker.

5. Create logic to check the Error_File is false before uploading data.

6. Connect the origin. This example uses origin data gathered from the path recording JSON's file.
Optionally, use the origin from the Origin function block.

7. Connect velocity, which is optional in many applications. If not using velocity, disregard the velocity
command signal from Path_Follower_Adv.

8. Create a pulse for Reset on Path_Follower_Adv. This signal triggers the block to go into a safe state
and overrides the Load signal.

9. Connect position, which uses the Position_Filter function block or other code that sends position
information.

10. Connect Bez_Path from Path_Loader to Path_Follower_Adv. Path_Loader sends information
about the recorded path to a data locker for Path_Follower_Adv to use. Nothing more needs to be
done besides connecting the two function blocks because the data locker stores the data
automatically.

11. Create any desired Output data from Path_Follower_Adv. This example includes common data a
state machine uses, such as:

a) Notifying when the machine finishes the path in Path_Complete.

b) Recording how many times the machine followed the path in Loop_Count.

c) Displaying information about which waypoint the machine just drove through in
Current_Waypoint.

12. Connect Cmd_Curv to the machine's steering control system and Cmd_Vel to the machine's propel
control system. The Path_Follower_Adv sends curvature commands to the machine to help it stay
on the path.

13. Connect Path_Extract between the Bez_Path signals, which extracts information from a data locker.
Here, Path_Extract could show the data about the path visually on a service tool screen, which helps
with debugging issues.

14. Optionally, see the Pre-Made Service Tool Screens on page 25 for all three blocks for comprehensive
results. Or, create a display of the information on a piece of hardware such as the DM1000.

Example - Multiple Paths

This example shows Path_Loader function blocks uploading information to a data locker for multiple
paths. A machine can go in one direction on the path, so piecing together multiple paths allows the
machine to go forward and backward. The Path_Extract function block visually displays the uploaded
path data, and the Path_Follower_Adv function block uses that data for a machine to follow the path.

Set up GNSS and positioning code earlier in the application, which could use the Position Filter function
block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 151

The example assumes code exists earlier in the application to establish a machine's position and origin.
See an overview of steps and explanations about what they achieve:

1. Add several Path_Loader blocks. Each Path_Loader block corresponds to a new path, which could
be the machine going in a different direction. Here, the machine travels forward using the higher
block and backwards using the lower block.

2. Add Path_Extract and Path_Follower_Adv function blocks. Additionally, add a Data_Lockers block
if it does not already exist in the application. It can go on any page, and there should only be one
Data_Lockers in an application.

3. Connect one JSON's file path to the signal Filename. Here, the file name is '/media/p1user/
Recorded_Path_Fwd.json' for the path driving forward. Path_Recorder generates the JSON file,
which is stored on a local file directory such as the XM100.

4. Connect the other JSON's file path to the signal Filename. Here, the file name '/media/p1user/
Recorded_Path_Rev.json' refers to the path recorded while the machine was driving in a reverse
direction.

5. Create pulse signals to Read the JSON files. This pulse triggers the block to read the file and write the
information to a data locker. Path_Loader loads the information it reads into a data locker
automatically if the Data_Lockers block exists somewhere in the application.

6. Create logic for Path_Follower_Adv to access the information loaded to a data locker. There only
needs to be one Path_Follower_Adv block per application.

7. Create a switch so each Path_Loader goes to a different data locker within the Data_Lockers block.

8. Create logic to check the Error_File signals are false before uploading data.

9. Create a pulse for Reset on Path_Follower_Adv. This signal triggers the block to go into a safe state
and overrides the Load signal.

10. Connect the origins. This example uses origin data gathered from the path recording JSON files.
Optionally, use the origin from the Origin function block.

11. Connect velocity, which is optional in many applications. If not using velocity, disregard the velocity
command signal from Path_Follower_Adv.

12. Connect position, which uses the Position_Filter function block or other code that sends position
information.

13. Connect Bez_Path from Path_Loader to Path_Follower_Adv. Path_Loader sends information
about the recorded path to a data locker for Path_Follower_Adv to use. Nothing more needs to be
done besides connecting the two function blocks because the data locker stores the data
automatically.

14. Create any desired Output data from Path_Follower_Adv. This example includes common data a
state machine uses, such as:

a) Notifying when the machine finishes the path in Path_Complete.

b) Recording how many times the machine followed the path in Loop_Count.

c) Displaying information about which waypoint the machine just drove through in
Current_Waypoint.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

152 | © Danfoss | June 2025 AQ295075513101en-000109

15. Connect Cmd_Curv to the machine's steering control system and Cmd_Vel to the machine's propel
control system. The Path_Follower_Adv sends curvature commands to the machine to help it stay
on the path.

16. Connect Path_Extract between the Bez_Path signals, which is the area that uploads information to a
data locker. Here, Path_Extract could show the data about the path visually on a service tool screen,
which helps with debugging issues.

17. Optionally, see the Pre-Made Service Tool Screens on page 25 for all four blocks for comprehensive
results. Or, create a display of the information on a piece of hardware such as the DM1000.

Inputs

The following table describes inputs required for the Path_Loader function block. The JSON file data
comes from the Path_Recorder block.

Item Type Range Description [Unit]

Filename STRING[255] —— Name of the JSON file, which is made from Path_Recorder.
The default name is '/media/p1user/Recorded_Path.json'.
The file must be within 'media/p1user'.

Read BOOL T/F False to True transition starts reading the JSON file and writing the information into a path
type data locker.
T: Read the file.
F: Do not read the file.
For optimal performance, have Read pulse false after reading the JSON file so it is not
constantly reading the file.

Parameters

The following table describes the parameter for the Path_Loader function block.

Item Type Range Description [Unit]

Verify_CRC BOOL T/F Indicates whether to check for corrupt JSON file data using Cyclical Redundancy Check
(CRC) MD5 protocol. It is recommended to check.
T: Check for a corrupt JSON file.
F: Do not check for a corrupt JSON file.
Default: True

Outputs

The following table describes outputs for the Path_Loader function block. The data could go into
Path_Follower_Adv or Path_Extract function blocks.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8100: Invalid ECU.

Origin BUS —— BUS containing UTM values of the path's origin, which are read from the JSON file.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 153

Item Type Range Description [Unit]

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 0x00000000-0x54
0BE400
This is the range of
the full U64 bit
number.

The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

Updated BOOL T/F Indicates when new data is being stored for the origin.
T: New data is available for the origin.
F: No new data is available.

Error_File U8 0-8 Indicates when an error happened in the JSON file. See JSON File Path Errors on page 155.

Finished BOOL T/F Indicates whether the path loaded into the data locker.
T: Path data loaded.
F: Path data has not loaded.

Bez_Path S8 -1-99 Defines the ID of the path type data locker.

Internal Signals

The following table describes what is happening internally in the Path_Loader function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Path_Loader_Err U8 0-2 Indicates when an error occurred in the block functionality.
See Path_Loader Troubleshooting on page 154.

Progress U16 0-10000 Indicates the progress loading the path in the data locker. Look here to see if
Path_Loader has stopped processing data.
[0.01%]

Path_Loader Troubleshooting

The following table describes errors that could occur in the Path_Loader function block and ways to fix
them. View the Path_Loader_Err signal on the Service Tool screen to see if any error numbers appear. In
PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Path_Loader_Err Descriptions and Fixes

Error Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread.
Too many threads are already running in the application.

Turn the controller off and on, or use less code in the application.

2 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

154 | © Danfoss | June 2025 AQ295075513101en-000109

JSON File Path Errors

The table shows errors related to the JSON file path function blocks and ways to fix them. To change a
JSON file, see Modify JSON and Update MD5 on page 27.

JSON Error File

Error Number Description How to Fix

0 - LOADER_ERROR_OKAY No errors. Nothing needs to change.

1 - LOADER_ERROR_FILE_NOT_FOUND The JSON file is not available. The file could have
the wrong name or not exist.

Verify the JSON file name is correct. Check that
the block looks for it in the correct location, such
as the XM100 or USB connected to the XM100.

2 - LOADER_ERROR_FILE_SIZE There may not be enough memory available to
read the JSON file, or the file is too large. This
could happen if the file was manually edited.

Take information out of the file, or use several
path files and have them run one after the other.

3 - LOADER_ERROR_READ The JSON file could not be read because it is
empty or incomplete.

Verify the file has not been manually modified,
and it contains the recorded path instead of
wrong information.

4 - LOADER_ERROR_CRC The Cyclical Redundancy Check (CRC) failed. The
JSON file is corrupted or manually modified.

Disable the Verify_CRC parameter if the JSON
file is modified on purpose. However, this is
discouraged. Compile the block again after
disabling to see if errors 5-8 appear, which
indicate what specifically is going wrong.

5 - LOADER_ERROR_JSON_NULL Wrong JSON data or incorrect JSON file. Verify the JSON file is valid, not manually
modified, and contains the recorded path.

6 - LOADER_ERROR_METADATA Wrong or missing metadata. This happens after
manually creating or modifying a JSON file if the
Verify_CRC is disabled.

Check that all the metadata fields are present in
the JSON file.

7 - LOADER_ERROR_ZERO_WAYPOINTS The path is empty with zero waypoints. Check the information stored in the JSON file and
re-record the path.

8 - LOADER_ERROR_WRONG_WAYPOINT_LEN The number of waypoints expected is different
than the number recorded. This happens after
manually modifying the file.

Re-record the path.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Loader Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 155

The Path_Recorder function block records the path a machine travels, and then stores the data in a JSON
file and Data_Lockers, allowing the machine to follow that path again.

This block requires a license for A+ Advanced. It also requires hardware compatible with the media file
system, such as the XM100. The minimum HWD version must be greater than 3.21.

The block records a series of waypoints, which are intermediate points on a route. These contain the
machine's relative XY position, yaw, and optionally the velocity and ancillary data, over a user specified
distance. Create paths based on either speed or position. The block does not record the time the machine
stops. Create additional code or multiple paths to account for the machine pausing.

While recording, it is recommended to have less than 25000 waypoints.

After the recording stops, the block stores these raw data waypoints and creates a file called
raw_data.csv, if the developer chooses. The .csv file takes up a lot of memory. That file includes values for
x, y, yaw, velocity, forced waypoints, and ancillary data. The block filters the data so the machine drives
smoothly when it retraces the recorded path later. The filtering process:
• Discards waypoints that are ±45 degrees different from the previous waypoint
• Verifies the velocity did not change between forward and backward
• Creates Bezier curves between waypoints
• Refines the Bezier curves based on the Velocity_Tolerance parameter

The filtered data appears in a Bez_Path signal and the JSON file. The Bez_Path signal allows the machine
to follow the path immediately, but it does not save the data over power cycles. The JSON file is stored in
the XM100 memory and includes the default name 'media/p1user/Recorded_Path.json'. Developers can
optionally download JSON files from the XM100, see Getting Files from XM100 on page 29.

If a JSON file needs modification, make any changes to it and save a new MD5. Then, use the new JSON
file in Path_Loader. See Modify JSON and Update MD5 on page 27.

The Path_Recorder function block records a machine going in one direction at a time, either forward or
backward. If the machine moves in multiple directions, record multiple paths to piece together later. This
block requires the machine to be manually driven along the path route to record the path. To write the
path coordinates into the code without driving the machine first, use the Path_Converter function
block. Usually, an application does not need both Path_Recorder and Path_Converter blocks together.

Positioning for this block is measured with a default assuming the GNSS antenna is mounted at the
steering point of the machine. For example, this could be the rear axle of a front wheel steer Ackermann
machine. If the antenna on the machine is located in a different area, code needs to be written to
translate it to the steering point. The path waypoints correlate with the front wheels and may not match
the GNSS during turns.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

156 | © Danfoss | June 2025 AQ295075513101en-000109

The Path_Recorder function block only supports Linux-based controllers. The recording stops and
deletes the raw data file if there are less than 100 megabytes of memory left on the controller. If the
machine moves forward and backward on the same recorded path, an error occurs.

When a machine moves in a back-and-forth direction, changes yaw suddenly, or experiences electrical or
communication disturbances, the machine may do sharp turns. To avoid sharp turns, force enough
waypoints, balance the tolerance values for curve fitting to skip disturbances, and check there are not too
many waypoints slowing down the whole system.

Application Information

Common function blocks that work with Path_Recorder are Data_Lockers, Path_Loader,
Path_Follower_Adv, and Path_Extract.

Path_Recorder records path data by manually driving a machine along a path to record, rather than
entering data into the function block. Information about the position of the machine is required earlier in
the application. Some basic path function block combinations include:

1. Scenario one shows Path_Recorder without other path blocks. Do this to save and copy a path to
another machine to use later. Path information saves in a JSON file. One Data_Lockers block is
required in all applications and does not need to connect to anything.

2. Scenario two shows information from the recorded path flowing into Path_Follower_Adv for a
machine to follow the recorded route immediately. Do this for repeatable tasks that need a new path
after the machine turns off. Turning off the machine loses recorded information.

3. Scenario three includes Path_Loader loading the recorded path information to a data locker from
the JSON file, which allows the machine to follow the path immediately or later from the saved file.

4. Scenario four includes Path_Extract. This block visually displays data about the path on a service tool
screen or a hardware display, such as the DM1000. Placing Path_Extract after Path_Follower_Adv

could show information about what part of the path is left to drive.

Additionally, place the Path_Recorder function block:
• Only once in each application, even though many paths can be recorded from the one block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.
• After position and yaw information is obtained, such as after a Position_Filter function block.

If the application needs velocity, get the signals from a wheel odometer. Ancillary data may also need to
come from other hardware.

Example

The example shows the Path_Recorder function block recording a path that the Path_Follower_Adv

function block then uses immediately. The program would be used in repeatable tasks that do not
require the machine to remember paths over power cycles.

Even though Path_Recorder records the path and stores the recorded JSON file, Path_Follower_Adv

consumes data from the Data_Lockers block for the machine to run. If the machine is turned off and on,
it will not follow this path again.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 157

The example assumes code exists earlier in the application to establish a machine's position and origin.
See an overview of steps and explanations about what they achieve:

1. Add the Path_Recorder and Path_Follower_Adv function blocks. Additionally, add a Data_Lockers

block if one does not already exist in the application. It can go on any page.

2. Connect the Origin to Path_Recorder. The origin information comes from earlier in the application
and ties the machine's position to a local coordinate frame.

3. Set Record to True for the entire recording. The machine must be manually driven while the
recording occurs. In this example, a set value component allows someone to set the value of the
signal on a service tool screen.

4. Create a set pulse for Reset and Force_Waypoint. Reset deletes a recorded path. Record must cycle
from True to False to True afterward to start re-recording the path. A forced waypoint means a
particular waypoint will be included in the final processed path. If a waypoint is not forced, that
coordinate could be filtered out of the path.

5. Leave Ancillary_Data as zero if there is nothing special to add. This input is a general area that can be
used for any extra data, such as work function information.

6. Determine whether to use velocity for Path_Recorder to take in and Path_Follower_Adv to use.
Velocity is optional for most applications. For example, the machine velocity could be manually
controlled. If not using velocity, set it to zero.

7. Connect Pos, which is the position information established earlier in the application code. This lets
the machine know where it is in relation to the path and could come from the Position_Filter

function block.

8. Create code so Path_Follower_Adv checks that Path_Recorder finished processing the path before
loading the data, and set a pulse to trigger the Load signal. This allows Path_Follower_Adv to use
the recorded data so the machine can drive the path that was just recorded.

9. Create a pulse for Reset on Path_Follower_Adv. This signal triggers the block to go into a safe state
and overrides the Load signal.

10. Connect Bez_Path from Path_Recorder to Path_Follower_Adv. Information about the recorded
path goes directly to a data locker for Path_Follower_Adv to use. Nothing more needs to be done
besides connecting the two function blocks because the data locker stores the data automatically.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

158 | © Danfoss | June 2025 AQ295075513101en-000109

11. Create any desired Output data from Path_Follower_Adv. This example includes common data a
state machine uses, such as:

a) Notifying when the machine finishes the path in Path_Complete.

b) Recording how many times the machine followed the path in Loop_Count.

c) Displaying information about which waypoint the machine just drove through in
Current_Waypoint.

12. Connect Cmd_Curv to the machine's steering control system and Cmd_Vel to the machine's propel
control system. The Path_Follower_Adv sends curvature commands to the machine to help it stay
on the path.

13. Optionally, visually see the data from Path_Recorder and Path_Follower_Adv on their Pre-Made

Service Tool Screens on page 25, or view each signal individually.

Inputs

The following table describes inputs required for the Path_Recorder function block. Most of this data
comes from the Position_Filter block and optionally a wheel odometer.

Item Type Range Description [Unit]

Record BOOL T/F Triggers the recording and saves the recorded data into a data locker. When the Record

signal goes from True to False, it stops the recording and starts saving the data to a data
locker.
T: Recording.
F: Waiting to record or saving the path data. Changing to false in the middle of the
recording stops the recording but processes the data already gathered.

Reset BOOL T/F False to True transition determines whether to stop the recording. When Save_Raw_Data

is True, the recording stops after writing the recorded path data to a data locker without
discarding the data.
T: Stops the recording.
F: Signal has no effect on block functionality.

Force_Waypoint BOOL T/F Triggers a waypoint to stay in the path rather than relying on the Path_Recorder

algorithm to create all the waypoints.
T: Forces the machine to go to a specific spot on the path. The waypoint information is
stored in the final post processed path.
F: Does not force the machine to travel to specific waypoints.

Data BUS —— BUS containing information about the path.

Ancillary_Data U32 0-4294967295 Array of extra information attached to a specific waypoint. For example, this could be
information about temperature, the state of the machine, or directions to stop.

Pos BUS —— Position and coordinate signals coming from the Position_Filter function block.

X S32 -2147483648-2147
483647

Current X position of the machine location.
[mm]

Y S32 -2147483648-2147
483647

Current Y position of the machine location.
[mm]

Yaw S32 -72000-72000 The angle used to describe the machine's heading using the ENU (East-North-Up)
reference frame.
[0.01 degree]

Vel_X S32 -2147483648-2147
483647

Velocity of the machine.
[mm/s]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 159

Parameters

The following table describes parameters for the Path_Recorder function block. All these parameters
can be hard-coded. However, the Origin bus could pull data from the Origin function block directly.

Item Type Range Description [Unit]

Origin BUS —— BUS containing UTM values of the path's origin, which are either outputs from the Origin

function block or hard-coded.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 0x00000000-
0x00000002

The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 0x00000000-0x54
0BE400
This is the range of
the full U64 bit
number.

The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.

Updated BOOL T/F Indicates when new data is being stored for the origin.
T: New data is available for the origin.
F: No new data is available.

Fitting BUS —— BUS containing information about how smoothly the machine travels on the path.

Min_Movement U16 100-10000 Minimum displacement to consider the position in the path.
[mm]
Default: 500

Max_Rollback_Distan

ce

U16 1 to
Min_Movement

Maximum distance machine is allowed to move opposite the driving direction without an
error occurring.
This feature disables if no velocity is input into the block.
Max_Rollback_Distance must be greater than or equal to Min_Movement.
[mm]
Default: 1

Curve_Fit_Tolerance U16 100-10000 Maximum distance between fitted and desired paths.
[mm]
Default: 500

Velocity_Tolerance U16 100-10000 Maximum distance between fitted and desired velocity.
[mm/s]
Default: 500

Save_Raw_Data BOOL T/F Determines whether to save the data gathered as the machine travels along a path.
T: If the machine resets, save the data in raw_data.csv.
F: If the machine resets, delete the raw data.

Zero_Vel_Threshold U32 0-60000 The time limit the Vel_X input can be 0 after the path recording starts. This applies after
the recording has started with the machine moving, and the program sees a non-zero
velocity. Then, if the machine stop time is greater than this parameter, the recording
automatically stops.
Default: 1000
[ms]

Wheelbase U16 1-20000 The distance between the centers of the front and rear wheels.
[mm]
Default: 5000

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

160 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Metadata BUS —— BUS containing extra data relevant to the block.

App_Name STRING[255] —— Name of the application. Use 255 characters or less.

Date_Time STRING[255] —— Timestamp in a format of YYYY/DD/MM hh:mm.
This is data for the waypoints in the path recording.

Ancillary_Caption STRING[255] —— Describes the data in the Ancillary_Data signal.

Filename STRING[255] —— Name of the output JSON file. Rename the file, if desired. The default name is '/media/
p1user/Recorded_Path.json'.

Forward_Driving BOOL T/F Indicates whether the machine drives forward or reverse.
T: The machine drives in the direction of the machine face.
F: The machine drives in the direction opposite to the machine face (negative velocity). For
example, the machine starts at the beginning of the path and drives facing backwards to
the end of the path.

Outputs

The following table describes outputs for the Path_Recorder function block. The data could go into
Path_Follower_Adv or Path_Loader function blocks, or the data could sit in a JSON file for later. See
Getting Files from XM100 on page 29.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Bez_Path S8 -1-99 Defines the ID of the path type data locker.

Finished BOOL T/F Finished signal is True when processing the recorded path data is done.
T: Processing recorded data is done and the path is available in a data locker.
F: Processing recorded data is not done.

Internal Signals

The following table describes what is happening internally in the Path_Recorder function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Path_Recorder_Err U8 0-12 Indicates when an error occurred in the block functionality.
See Path_Recorder Troubleshooting on page 162.

Progress U16 0-10000 Indicates the progress of processing the raw recorded path data into a final path with
filtered data. Look here to see if Path_Recorder has stopped processing data. Short paths
may not indicate incremental progress but only say when the processing is 100%
completed.
[0.01%]

Zero_Vel_Time U32 0-4294967295 Indicates how long the Vel_X input of Path_Recorder was zero during recording. Monitor
Zero_Vel_Time to see if the time surpasses the Zero_Vel_Threshold parameter and how
long it lasted. The path recording automatically stops if the threshold is passed.
[ms]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 161

Item Type Range Description [Unit]

Num_Raw_Points U32 0-4294967295 Number of raw data points stored in the raw_data.csv file. See Getting Files from XM100 on
page 29 to access this data. If Save_Raw_Data is True, these data points are before the
path filtering process occurs.
Look here to see how many waypoints were excluded from the filtered path or to see if
there is an option of getting data from other points.

Num_Waypoints U16 0-65535 Number of waypoints in the path used by Path_Recorder after filtering data. Look at this
value to see if too many waypoints are excluded and no data is processing.

Path_Recorder Troubleshooting

The following table describes errors that could occur in the Path_Recorder function block and ways to
fix them. View the Path_Recorder_Err signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Path_Recorder_Err Descriptions and Fixes

Number Description How to Fix

0 There is no error. Nothing needs to change.

1 Error writing the raw CSV file. The file cannot be opened or the
new data cannot append to it. The file could be read only or not
available.

Verify that the CSV file '/media/p1user/raw_data.csv' is in the
correct location and not read only.

2 There is less than 100 megabytes of memory left on the controller. Delete files on the controller's hard drive, '/media/p1user/
raw_data.csv'.

3 The machine moved opposite the direction defined by the
Forward_Driving signal, and this movement is greater than the
Max_Rollback_Distance signal allows. A path cannot record both
forward and reverse.

Increase the Max_Rollback_Distance signal, if possible. Or,
record two paths with one in forward and the other in reverse.

4 Cannot create background thread. Turn the controller off and on, or use less code in the application.

5 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

7 The program cannot open the raw data file for post-processing or
the file does not exist. When the CSV file is not generated after
path recording, this error appears.

Re-record the path.

8 The number of lines in the CSV file differs from the number of lines
in the Path_Recorder function block. The data in CSV does not
match the JSON file.

Re-record the path.

9 Cannot open the JSON file '/media/p1user/Recorded_Path.json'
for writing.

Check the JSON file location or re-record the path.

10 Cannot write some parts of the data to the JSON file. The JSON file
might be read only.

Check that the JSON file is not read only, or re-record the path.

11 The JSON file size is larger than allowed and runs out of memory.
There cannot be more than 1 million characters.

Re-record the path with less data points, and make sure the
metadata has smaller strings.

12 The number of waypoints exceeds the limit of 65,535 waypoints. Re-record the path with less waypoints, or create multiple paths.

Other Errors and Fixes

Error Description How to Fix

The Progress bar stays at 0% and then jumps to 100%. The Progress bar may not indicate incremental progress, even though the
data is processing. Monitor the Path_Recorder_Err signal to see if errors
occur. Otherwise, there should not be any issues related to the Progress
bar jumping to 100%.

The Progress bar stays at 0%. The Progress bar may not indicate incremental progress, but the data
could be processing. Monitor the Path_Recorder_Err signal to see if errors
occur. Monitor the Finished flag to confirm the path completed
processing. Longer paths with more data take longer to process.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

162 | © Danfoss | June 2025 AQ295075513101en-000109

Additionally, the current path is lost if the ECU loses power unexpectedly or is power cycled while
following a path. To recover from an ECU power loss, see Restart or Resume Recording After ECU Power Loss

on page 29.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Path_Recorder Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 163

The Planar_Surface_Segmentation function block uses a LiDAR scanner to isolate a singular flat surface
in the point cloud data. This includes any surface of interest like a ground or wall.

This block requires a license for A+ Advanced.

Planar_Surface_Segmentation requires LiDAR hardware and accompanying code, such as the Ouster
LiDAR hardware and the Ouster_LiDAR function block. See the Plus+1 Compliant Ouster Block User

Manual for information.

Machines driving over bumpy ground or taking weight on one side could tip the LiDAR scanner, giving
false data about the environment around the machine. Planar_Surface_Segmentation helps with
situations like these by consistently detecting the ground which could be used to offset data from the
bumps or tipping. The block accurately finds walls, flat ground, and sloping ground.

The block algorithm finds a planar surface, which is a surface that is flat or level and extends infinitely in
two dimensions. In doing so, the block splits the input point cloud into two different parts and outputs
those.

Application Information

The Planar_Surface_Segmentation function block uses a LiDAR scanner to collect point cloud data and
identify a planar surface.

Common function blocks that work with Planar_Surface_Segmentation are the Ouster_LiDAR

function block if using Ouster LiDAR hardware, and perception blocks such as Obstacle_Avoidance and
Obstacle_Detect.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

164 | © Danfoss | June 2025 AQ295075513101en-000109

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as an Ouster LiDAR
hardware and the Ouster_LiDAR function block. This gathers point cloud data which
Planar_Surface_Segmentation uses.

2. Scenario two includes an Autonomous Control Library (ACL) perception function block after
Planar_Surface_Segmentation. Any perception block that uses point cloud data works. For
example, connect Obstacle_Avoidance to one of the Planar_Surface_Segmentation output point
clouds to detect obstacles in a more accurate and efficient way.

3. Scenario three includes the LiDAR_Mask function block after the LiDAR code, followed by
Planar_Surface_Segmentation. LiDAR_Mask omits certain data from the LiDAR's point cloud,
saving processing time when detecting the planar surface with Planar_Surface_Segmentation. A
perception block can receive input data for further analysis.

Additionally, place the Planar_Surface_Segmentation function block:
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application. If a

Data_Lockers block already exists in the application, do not add more.
• After and not before the LiDAR code, as represented in the scenarios. LiDAR hardware is required.

The process begins with accessing the environment the machine is in and determining what the machine
is expected to accomplish. The LiDAR code and hardware are set up with this in mind. Then,
Planar_Surface_Segmentation gets point cloud data from the LiDAR, processes it, and splits the point
cloud into two parts.

Configure the LiDAR

LiDAR hardware and software configuration are required to get the information the
Planar_Surface_Segmentation function block needs to work.

Environment plays an important role in determining how to set up the LiDAR hardware because the
machine needs to see certain features. Applications using Planar_Surface_Segmentation begin with
LiDAR hardware and accompanying code, such as the Ouster LiDAR hardware and the Ouster_LiDAR

function block. See the Plus+1 Compliant Ouster Block User Manual for information about LiDARs, point
clouds, and the Ouster_LiDAR function block. Parameters programmed into the LiDAR hardware and
block earlier in the code determine the scope of the point cloud that Planar_Surface_Segmentation

can use.

The images show a machine with a LiDAR on top (circled in red). Take measurements from the ground to
the LiDAR origin, and take measurements of important items in the environment surrounding the
machine.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 165

The height and placement of the LiDAR hardware affect Planar_Surface_Segmentation parameters.
The LiDAR should be positioned so it can find the plane, or surface, and measurements taken to see how
high up the LiDAR sits and how far away it needs to see. For instance, if detecting the ground, the LiDAR
hardware should have a view of the ground around the machine. If detecting a wall, it needs to view the
wall.

The LiDAR's scope of view is usually programmed into the LiDAR's code, not
Planar_Surface_Segmentation, although the scope could be narrowed within the block. Anything
outside of the LiDAR's view will not be detected at all, and the LiDAR cannot see behind objects.

The image shows the room from the LiDAR scanner's perspective, and then it shows the point cloud
generated from the LiDAR into the room.

In PLUS+1® GUIDE, the point cloud data obtained from the LiDAR goes into a data locker and then inputs
into PtCld_In on Planar_Surface_Segmentation. See Data_Lockers Helper Block on page 77 for more
information on data lockers. On a service tool screen, the data locker ID number between 0-99 displays in
PtCld_In.

Configure the Region of Interest

After the LiDAR is set up with incoming point cloud data, Planar_Surface_Segmentation parameters
define a 3D region of interest zone to view this point cloud data and locate a surface.

This 3D region of interest zone acts as a filter determining which data to analyze rather than limiting the
point cloud. If trying to locate the ground, the boundary dimensions should include the ground. If
detecting a wall, the dimensions should include the wall. If detecting multiple surfaces, use one
Planar_Surface_Segmentation function block per surface. However, multiple blocks take a lot of
processing power.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

166 | © Danfoss | June 2025 AQ295075513101en-000109

The image shows the point cloud with the region of interest (red rectangle). Black dots represent the
point cloud points the LiDAR sees, with white areas outside the LiDAR's view. The green dots represent
the point cloud points Planar_Surface_Segmentation processes from the LiDAR after parameters are
further tuned. The block looks for a surface within the region of interest boundary and point cloud it sees
(represented with green points), and ignores the other data (black points, white spaces).

Start_Angle and Stop_Angle parameters define the LiDAR's scope of view, or Azimuth window, within
Planar_Surface_Segmentation. Parameters for this window were also defined earlier in the LiDAR code,
but they could be tuned here. For the LiDAR to see in front of itself, a Start_Angle of -60 degrees and
Stop_Angle of 60 degrees gives it a 120 degree range of view ahead. The region of interest boundary
should be within the LiDAR's window of view.

Max_Height and Min_Height parameters define the height range of the region of interest boundary
where input point cloud data is analyzed. The LiDAR's origin point determines the height starting point,
with negative numbers telling the LiDAR to look below itself and positive numbers telling it to look
above. For instance, if the LiDAR is mounted 300 mm above the ground, to detect the ground, set
Min_Height to -300 mm and Max_Height to -100 mm to see a 200 mm range just above the ground, or
set it to 100 mm for a bigger 400 mm height range from the ground.

Max_X and Min_X define how far the region of interest boundary is in front of and behind the LiDAR,
with the LiDAR as a zero starting point. For example, Max_X of 50000 mm and Min_X of -50000 mm
indicates the region of interest extends a range of 100000 mm around the LiDAR. If the LiDAR needs to
only process data in front of itself, Min_X of 20000 mm would start the region of interest boundary
further ahead and save space from processing unnecessary data.

Max_Y and Min_Y define the width of the region of interest boundary. If the LiDAR needs to see a small
hallway, these numbers could be small. For a wide field, they would be large. For example, with the LiDAR
as the zero starting point, Max_Y of 50000 mm and Min_Y of -50000 mm indicate the boundary extends
a range of 100000 mm around the LiDAR.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 167

Find a Plane

After defining the 3D region of interest dimensions in the input point cloud,
Planar_Surface_Segmentation finds the plane within the region.

To begin finding the plane, Planar_Surface_Segmentation uses the Fraction_Ransac_Points

parameter to randomly select a percentage of input point cloud points within the region of interest.
Num_Iterations determines how many times to randomly select the points and average them out to
create the plane. Lower Fraction_Ransac_Points and Num_Iterations lead to better processing times
but less accurately portray the plane.

The images show the LiDAR viewing points within the region of interest (orange rectangle). The top
image shows a lower number of Fraction_Ransac_Points being used than the bottom image.

Planar_Surface_Segmentation determines the most common plane and uses this dominant plane in
the rest of the process.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

168 | © Danfoss | June 2025 AQ295075513101en-000109

The image depicts the region of interest (rectangle) around the point cloud (green dots) with the solid
red square depicting the identified most dominant plane. This plane extends infinitely, even outside of
the region of interest bounds.

Configure the Inlier Point Cloud

After finding the most dominant plane, the Planar_Surface_Segmentation function block uses it to
separate the input point cloud into two parts called inlier and outlier.

The region of interest boundary is no longer used after the plane is detected. Any points that fall within
the plane become the inlier point cloud, and anything beyond that becomes the outlier point cloud. Both
point clouds extend as far as the LiDAR hardware can see unless other code limited this scope.

The first image shows the inlier point cloud based on the planar surface (red points). The second image
shows the outlier point cloud (black points).

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 169

The inlier point cloud begins with no depth, just the flat plane. However, the Distance_Threshold

parameter is used to add volume to the plane and make it a surface. For instance, entering 10 mm into
PLUS+1® GUIDE expands the inlier point cloud by 10 mm both above the plane and below the plane for a
range of 20 mm.

The Ordered parameter indicates that Planar_Surface_Segmentation will output an ordered point
cloud if True. Most perception blocks in the Autonomous Control Library require ordered instead of
unordered point cloud data. If changed to False, the information associated with each point become Not
a Number (NaN) and are lost. Unordered saves processing power, but the lost information cannot be
retrieved later.

Tweak parameters to fine tune processing power by reviewing the Pre-Made Service Tool Screens on page
25. The inlier and outlier output point clouds could be programmed to do different things.

Example

This example explains how to connect the Planar_Surface_Segmentation function block from a high
level, and then fill out the parameters to identify the ground plane.

The environment where the machine runs matters a great deal for Planar_Surface_Segmentation. Test
the machine in different environmental settings which relate to where the machine will be used in real
life situations.

1. Set up a LiDAR scanner on the machine and measure how high it is from the ground to the LiDAR
origin. This example uses Ouster LiDAR hardware and assumes the LiDAR is 300 mm above the
ground on a small machine. View the Ouster LiDAR User Manual to set up the hardware and
Ouster_LiDAR function block.

The image shows the machine with a LiDAR scanner on top measuring 30 cm from the ground to the
LiDAR origin.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

170 | © Danfoss | June 2025 AQ295075513101en-000109

2. Set up the LiDAR code. This example uses the Ouster_LiDAR function block. The area the LiDAR sees
is determined by the physical hardware and accompanying LiDAR code. For example, if a LiDAR
scanner is set up so the ground or wall cannot be seen, this cannot be corrected in
Planar_Surface_Segmentation.

3. Add in the Data_Lockers block if it was not already in the application. This block should not be
connected to any buses or wires, only exist once in the application, and can go on any page within
the application.

4. Connect O_PtCld from the Ouster_LiDAR block to PtCld_In in Planar_Surface_Segmentation. This
allows point cloud information gathered from the LiDAR to be consumed by
Planar_Surface_Segmentation. This information flows to a data locker and back automatically
between these two blocks, so no numbers need to be adjusted.

5. Connect Planar_Surface_Segmentation to another Autonomous Control Library (ACL) perception
block. Here, the outlier output point cloud connects to the Obstacle_Detect function block so the
machine behaves a certain way when any objects in the outlier point cloud are detected.

6. Configure the parameters within Planar_Surface_Segmentation. Here, the code is set up to find the
ground and assumes the LiDAR hardware is 300 mm from the ground to the LiDAR origin.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 171

The image shows the parameters in the service tool screenshot. See Pre-Made Service Tool Screens on
page 25 to find a pre-made service tool screen. PtCld_In shows the data locker ID of 0.

a) Set Max_Height and Min_Height to find a region of interest. In this example, the LiDAR is 300 mm
from the ground to the LiDAR origin, so setting the parameters to -100 mm and -20000 mm means
the LiDAR reads between 20000 mm and 100 mm below itself. This configuration filters out noise
and unrelated points from above the ground.

b) Set Max_X, Min_X, Max_Y, and Min_Y to complete the region of interest boundary. Here, a large
rectangle is created around the LiDAR to pick up point cloud points on a surface. X indicates
length, and Y indicates width.

c) Set Start_Angle and Stop_Angle to limit the region of interest boundary. Here, to isolate the
ground using points directly ahead of the machine, the parameters are assigned -60 degree and 60
degree values. This prioritizes the points ahead of the machine and removes irrelevant data to the
sides of the machine.

d) Leave Ordered as True. This allows ordered point cloud data to process out of
Planar_Surface_Segmentation and be used by other ACL perception blocks. This example
eventually connects to Obstacle_Detect.

e) Set Distance_Threshold. Setting it to 100 mm means the plane found on the ground will have an
input point cloud that is 100 mm above and 100 mm below the ground for a height range of 200
mm. However, the point cloud extends as wide and long as the LiDAR hardware can see and LiDAR
code allows.

f) Set Fraction_Ransac_Points to randomly select a percentage of input point cloud points within
the region of interest. Here, 40 percent of the points are selected.

g) Set Num_Iterations to determine how many times to randomly select the points and average
them out to create the plane. Here, the points will be averaged out 20 times.

Check Internal Signals

After setting up the parameters, check the Planar_Surface_Segmentation function block internal
signals to see if they are working well.

See Pre-Made Service Tool Screens on page 25 to find a pre-made Internals and Outputs service tool
screen.

1. Check error numbers in Segmentation_Err. If a number besides zero appears, see how to fix it in
Planar_Surface_Segmentation Troubleshooting on page 177. Zero indicates no error. Three indicates

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

172 | © Danfoss | June 2025 AQ295075513101en-000109

slow processing times and requires further tuning in the block. See Reduce Processing Time on page
174.

2. Note the Processing_Time, which should be below 500000. To lower it, adjust parameters
Fraction_Ransac_Points and Num_Iterations to smaller numbers.

3. See if the Updated signal appears green, which means data is processing. A red X means data
stopped processing, which usually means the processing time was too long.

4. Check that the Num_Filtered_Points number is more than 100 so the block has enough points to
find a plane. This number displays the number of input point cloud points that passes the constraints
set in the region of interest boundary.

5. Add Num_Inlier_Points and Num_Outlier_Points to determine the total number of output point
cloud points. The total number of input point cloud points can be calculated using the reference
table. If the input point cloud point numbers match the output point cloud points, then the block is
working correctly. If the numbers do not match, data may be lost.

The image shows the number of point cloud points common for the type of LiDAR channel.

6. Skip Inliers_Fitness and Inliers_Rmse_Error. These are for internal Danfoss use.

7. Check that the Seq_ID increases. This is a timestamp of when the LiDAR hardware captured the point
cloud. With each LiDAR capture, the Seq_ID increases, indicating that new data processed.

8. Observe the Coefficients_Plane numbers to see the equation of the plane, which is ax + by + cz + d
= 0. Here, it would be 27860x + 4170y + 999603z + 306233 = 0. This can also be visualized in other
programs, such as CPM 3D Plotter.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 173

https://technology.cpm.org/general/3dgraph/

The image displays a visual of the plane, which shows it is on the ground. The coefficients do not
have units, but some external programs may require units. Here, the coefficient numbers were
divided by 10^6 to get distance in meters.

9. Monitor the Fault and Status codes to see if errors occur. No errors for each will read 0x0000.

10. Skip PtCld_Inlier and PtCld_Outlier. These are the data locker IDs and are assigned automatically.

Reduce Processing Time

Make adjustments to reduce the processing time for Planar_Surface_Segmentation. Use one
Planar_Surface_Segmentation function block instead of multiple blocks for the best processing times.

A high Processing_Time appears as Segmentation_Err number 3. Zero indicates no errors, but the
processing time could still be reduced without compromising the accuracy.

1. Take a baseline measurement of the Processing_Time found in the service tool screen.

a) Record the Processing_Time with the initial Num_Iterations and Fraction_Ransac_Points

parameters.

b) Record the initial Num_Inlier_Points and Num_Outlier_Points values.

2. Reduce the Num_Iterations and Fraction_Ransac_Points parameter values.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

174 | © Danfoss | June 2025 AQ295075513101en-000109

3. Record the processing time again after reducing the parameters.

4. Compare the new processing time with the old. A significant reduction in time improves efficiency
but could limit accuracy. Here, the processing time decreased from about 60000 to 22500
microseconds.

5. Ensure that Num_Inlier_Points and Num_Outlier_Points remain close to the original baseline
values. This indicates that the data has not been compromised.

6. Continue incrementally adjusting the Num_Iterations and Fraction_Ransac_Points parameters and
recording the results. This iterative approach helps find a balance between processing speed and
accuracy.

7. Maintain a record of the Processing_Time, Num_Inlier_Points, and Num_Outlier_Points after each
parameter adjustment. This gives a clearer view of the tradeoffs in speed and accuracy.

8. After identifying the optimal settings that offer fastest processing times with accurate results, use
these settings for Planar_Surface_Segmentation.

Inputs

The following table describes inputs required for the Planar_Surface_Segmentation function block.
This block requires a LiDAR, LiDAR code such as the Ouster_LiDAR function block, and a Data_Lockers

block. Any block that outputs point clouds can be used as an input to Planar_Surface_Segmentation.

Item Type Range Description [Unit]

PtCld_In S8 -1-99 The point cloud data locker ID where LiDAR scan data is stored. LiDAR data can be either
an unordered or ordered point cloud.

Parameters

The following table describes parameters for the Planar_Surface_Segmentation function block. These
parameters can be hard-coded or come from Obstacle_Avoidance or Obstacle_Detect function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 175

Most blocks can take in ordered point cloud data, but only a few blocks can access unordered point cloud
data.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Distance_Threshold U32 0-30000 The threshold distance between the detected plane and the point cloud points. Points
with distance value less than the threshold are inlier points.
Default: 200
[mm]

Fraction_Ransac_Poin

ts

U16 20-65 The fraction of filtered points to be used for detecting the most dominant plane.
Default: 40
[%]

Num_Iterations U16 5-100 The number of iterations to be done to find the most dominant plane.
Default: 20
[Iterations]

Max_Height S32 Min_Height + 1
to 50000

The maximum height threshold value to limit the filtered points from the input point
cloud.
Default: -700
[mm]

Min_Height S32 -50000 to
Max_Height - 1

The minimum height threshold value to limit the filtered points from the input point
cloud.
Default: -20000
[mm]

Max_X S32 Min_X +1 to 5000 The maximum X coordinate threshold value to limit the filtered points from the input
point cloud.
Default: 5000
[mm]

Min_X S32 -50000 to Max_X

-1
The minimum X coordinate threshold value to limit the filtered points from the input
point cloud.
Default: -50000
[mm]

Max_Y S32 Min_Y +1 to
50000

The maximum Y coordinate threshold value to limit the filtered points from the input
point cloud.
Default: 50000
[mm]

Min_Y S32 -50000 to Max_Y

-1
The minimum Y coordinate threshold value to limit the filtered points from the input point
cloud.
Default: -50000
[mm]

Start_Angle S16 -18000 to
Stop_Angle -1

The minimum azimuth angle threshold value to limit the filtered points from the input
point cloud.
Default: -18000
[0.01 degree]

Stop_Angle S16 Start_Angle +1 to
18000

The maximum azimuth angle threshold value to limit the filtered points from the input
point cloud.
Default: 18000
[0.01 degree]

Ordered BOOL T/F Determines whether the block outputs ordered or unordered point cloud data. This is only
valid if PtCld_In is ordered.
T: PtCld_Outlier and PtCld_Inlier are both ordered.
F: PtCld_Outlier and PtCld_Inlier are both unordered.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

176 | © Danfoss | June 2025 AQ295075513101en-000109

Outputs

The following table describes outputs for the Planar_Surface_Segmentation function block. The point
cloud is divided into two sections: inlier and outlier data.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

PtCld_Out BUS —— The output bus containing point cloud data.

PtCld_Outlier S8 -1-99 The point cloud data locker ID where outlier point cloud data is stored.
[Locker ID]

PtCld_Inlier S8 -1-99 The point cloud data locker ID where inlier point cloud data is stored.
[Locker ID]

Planar_Surface_Segmentation Troubleshooting

The following table describes errors that could occur in the Planar_Surface_Segmentation function
block, as well as ways to fix them. View the Segmentation_Err signal on the Service Tool screen to see if
any error numbers appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal

Signals column.

Segmentation_Err Descriptions and Fixes

Error Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. Turn the controller off and on, or use less code in the application.

2 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

3 A background thread took more than 500 milliseconds to process
the data. However, a valid output is still coming out.

Adjust the block parameters to speed up processing time. Reduce
the size of the input point cloud. For example, use the
LiDAR_Mask block or decrease the resolution of your LiDAR
driver. If the processing time takes more than 10 seconds, turn the
controller off and on.

4 The start angle is smaller than the LiDAR hardware minimum
measuring angle. For example, the LiDAR hardware measures -60
to 60 degrees, but the block is told to measure -90 to 90 degrees,
outside of the hardware's minimum angle (-60 degrees).

Adjust the Start_Angle to be within the LiDAR hardware's
minimum measuring angles.

5 The stop angle is larger than the LiDAR hardware maximum
measuring angle. For example, the LiDAR hardware measures -60
to 60 degrees, but the block is told to measure -90 to 90 degrees,
outside of the hardware's maximum angle (60 degrees).

Adjust the Stop_Angle to be within the LiDAR hardware's
maximum measuring angles.

6 The difference between the Start_Angle and Stop_Angle are
smaller than the Azimuth resolution of the LiDAR hardware.

Adjust the Start_Angle and Stop_Angle to be more than the
Azimuth resolution of the LiDAR hardware.

7 There are less than 100 points for the block to work, so the point
cloud is lost.

Choose parameters such that the filtered data contains more than
100 points of point cloud data: Height_Max, Height_Min, X_Max,
X_Min, Y_Max, Y_Min, Stop_Angle, and Start_Angle, the
Distance_Threshold parameter.

8 The block took in unordered point cloud data and was asked to
create ordered point cloud data. Blocks can only create unordered
point cloud data if that is what they take in.

Check the Ordered parameter. If input point cloud data is
unordered, this flag must be false.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Planar_Surface_Segmentation Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 177

The Position_Filter function block produces a single position estimate from the position, velocity, and
acceleration inputs. The filter then fuses these sensor measurements together to create an improved
localization estimate.

The Position_Filter function block can handle input data coming in at different rates and varying levels
of sensor accuracy. Each sensor input includes a Std_Dev (standard deviation) signal that describes the
amount of potential error in a given reading. This helps the block appropriately filter the incoming signals
based on this level of confidence.

The block receives absolute data from a Global Navigation Satellite System (GNSS) unit or LiDAR. It
receives odometry data from relative sensors such as an Inertial Measurement Unit (IMU), or velocity
sensor such as a Pulse Pick-up Unit (PPU). Then, the block uses position filtering to combine those inputs
to determine the location of the machine.

Position_Filter uses an Extended Kalman Filter mathematical equation, which fuses all the data together
to get a more accurate understanding of the position than one sensor could alone. It records GNSS
(location error), wheel odometer (speed error + angle error), and yaw source (direction error). The output
is a relative position.

The Yaw input could come from the Yaw_Estimate function block, Yaw Rate input could come from the
Ackermann_Yaw_Rate function block, and Pos_XY could come from Relative_Pos function block.

If the machine drives in reverse and does not have a smart antenna, program logic to flip the yaw
between the Yaw_Estimate function block output and Position_Filter input.

Inputs

Inputs to the Position_Filter function block are described.

Item Type Range Description [Unit]

Reset BOOL T/F Completely resets all values stored in the function block.
T: Reset all values in the function block.
F: Do not reset values.

Pos_XY BUS —— This bus contains X (Easting), Y (Northing) and its standard deviations.

X S32 -2147483648-2147
483647

Current X position of the machine location.

Keep the X position within -16 to 16 kilometers.

[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Position_Filter Function Block

178 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Y S32 -2147483648-2147
483647

Current Y position of the machine location.

Keep the Y position within -16 to 16 kilometers.

[mm]

X_Std_Dev U32 1-4294967295 Standard deviation of X.
[mm]

Y_Std_Dev U32 1-4294967295 Standard deviation of Y.
[mm]

Updated BOOL T/F True when there is new X and Y values.
Use the new X and Y values.
Do not use the new X and Y values.

Vel_X BUS —— This bus contains velocity data and the standard deviation for it.

VelX S32 -100000-100000 The linear velocity of the machine.
[mm/s]

VelX_Std_Dev U32 1-4294967295 The standard deviation of VelX.
[mm/s]

Updated BOOL —— True when there is new data.
T: New data is ready.
F: New data is not ready.

AccX BUS —— Contains acceleration data and the standard deviation for it.

AccX S32 -100000-100000 Acceleration in the direction of the X-axis, forward direction for the machine.
[mm/s²]

AccX_Std_Dev U32 1-4294967295 The standard deviation of AccX.
[mm/s²]

Updated BOOL —— True when there is new data.
T: New data is ready.
F: New data is not ready.

Yaw BUS —— Contains the Yaw data and the standard deviation for it.

Yaw S32 -72000-72000 The angle used to describe the machine's heading using the ENU (East-North-Up)
reference frame.
[0.01 degree]

Yaw_Std_Dev U32 1-4294967295 The standard deviation of the filtered Yaw value.
[0.01 degree]

Updated BOOL —— True when there is new data.
T: New data is ready.
F: New data is not ready.

Yaw_Rate BUS —— The standard deviation of Yaw_Rate.

Yaw_Rate S32 -1312080-1312080 The angular velocity of the machine relative to the machine's vertical axis.
[0.01 deg/s]

Yaw_Rate_Std_Dev U32 1-4294967295 The standard deviation of Yaw_Rate.
[0.01 deg/s]

Updated BOOL T/F True when new data is available from the conversion.
T: New data is available.
F: New data is not available.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Position_Filter Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 179

Outputs

Outputs of the Position_Filter function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
*Non-standard
0x0000: Status OK.
0x0001: Computation error.
If this error persists, reset the block.
0x0002: Bad microsecond timer value.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Pos BUS —— This bus contains all of the output data for the block.

X S32 -2147483648-2147
483647

The filtered X value out of the block.
[mm]

Y S32 -2147483648-2147
483647

The filtered Y value out of the block.
[mm]

Yaw S32 -72000-72000 The filtered Yaw value out of the block.
This uses the ENU convention.
[0.01 deg]

X_Std_Dev U32 1-4294967295 The standard deviation of the filtered X value.
[mm]

Y_Std_Dev U32 1-4294967295 The standard deviation of the filtered Y value.
[mm]

Yaw_Std_Dev U32 1-4294967295 The standard deviation of the filtered Yaw value.
[0.01 deg]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Position_Filter Function Block

180 | © Danfoss | June 2025 AQ295075513101en-000109

The Post_Detect function block searches an incoming LiDAR scan for features that match the profile of a
rectangular post and outputs the locations and properties of up to 100 matching posts.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about the Ouster LiDAR scanner and block. Other types of sensors do not
work as well as LiDARs.

Use Post_Detect if the environment surrounding the machine contains posts of similar dimension.
Machines receive the position of the posts. After that, other code could utilize the post position so
machines could move between them. See Local Coordinate System on page 17.

Post criteria:
• Posts must be three dimensional, not two dimensional. Two sides of the post must be visible to the

LiDAR scanner.
• Posts must be rectangular, not cylindrical. Visible sides of the post should form a 90 degree angle,

with a 5 degree angular tolerance. Anything larger than a 15 degree angular tolerance will never be
detected.

• Multiple posts must have the same length and width as other posts.
• Posts must be at least 500 mm apart from an object, taking depth into account from the LiDAR's

perspective. A post against a wall will only be detected if the distance between the two is greater
than 500 mm.

• Height of the post is not a factor.
• Posts must be vertical with respect to the LiDAR's z-axis. Tilt the LiDAR to the appropriate angle to

detect horizontal posts.
• Posts tilted within 5 degrees with respect to the z-axis are detected, and more than 15 degrees are

never detected.
• At least two LiDAR rings must land on the post for it to be detected.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 181

The image above depicts some criteria required for post detection.

Posts can be spaced apart at different intervals within the range of the LiDAR, as long as the posts have
the same length and width. Use another Post_Detect function block for posts with different length and
width dimensions, or set the Tolerance parameter high to detect posts with different dimensions.

Ordered point cloud data from a LiDAR enters Post_Detect as an input. Then, Post_Detect gives the 2D
(X, Y) position of the post center, along with the width and standard deviation of the post. Standard
deviation in Post_Detect refers to the error in the (X, Y) position of the post center, along with other
uncertainty. This block also gives the Yaw of the post, referring to the rotation of the post itself and not
where the post is located around the LiDAR.

The image above shows the yaw rotation of the post.

When programming, put in the expected width and length of the posts. Big or small numbers do not
matter. If the posts vary in width or length, set a high Tolerance for the block to detect the posts. A
Tolerance of zero means the Post_Width and Post_Length must exactly match the parameter number
entered, but a tolerance of 10 mm means the block detects a post measuring 10 mm larger or smaller
than both the length and width parameter number entered. Post_Detect ignores posts measuring
outside of that range.

Additionally, enter the number of LiDAR points needed to detect a post into Min_Points_Per_Side.
Fewer LiDAR points allow LiDARs to detect posts far away from it, but larger numbers improve accuracy
of post detection. The number of LiDAR points applies to both the length and width surfaces of the
rectangular post.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

182 | © Danfoss | June 2025 AQ295075513101en-000109

As the LiDAR moves, it counts the number of posts and gives that number in Num_Features. Posts out of
range of the LiDAR drop off the numbered list, so the Num_Features output may always change. The
LiDAR reads the closest post to itself as the first post, and numbers other posts depending on how close
they are to itself. When the LiDAR moves closer to a different post, it now reads that new post as the first
post, so the number assigned to a post always changes as the LiDAR moves. Lower numbers indicate
more confidence in the data because they are for the closest posts to the LiDAR.

The images depict a machine moving through many posts. In Post_Detect, the post numbers
correspond with how close the post is to the LiDAR. Height is not a factor.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 183

Application Information

Common function blocks used with the Post_Detect function block are Data_Lockers and LiDAR_Mask.
Post_Detect also requires LiDAR hardware with accompanying code.

Post_Detect works well in a localization application. See Local Coordinate System on page 17.

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as the Ouster
LiDAR hardware and the Ouster_LiDAR function block. This gathers point cloud data about the
environment, including seeing posts. Post_Detect processes the data about the posts. Program the
machine to react depending on any posts detected, such as moving toward or away from the posts.

2. Scenario two includes the LiDAR_Mask function block after the LiDAR code, followed by
Post_Detect. LiDAR_Mask omits certain data from the LiDAR's point cloud, saving processing time.
Then, the machine can be programmed to react a certain way based on whether any posts are
detected.

3. Scenario three includes custom code after Post_Detect, which tell the block how to process the data
for the machine to avoid objects in Obstacle_Avoidance.

Additionally, place the Post_Detect function block:
• After LiDAR data is collected, such as after the Ouster_LiDAR function block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.

Post_Detect is not usually used with other detection function blocks, such as Obstacle_Detect or
Reflector_Detect.

Example

This example shows the Post_Detect function block used as if a machine needs to drive past a series of
posts.

1. Set up the LiDAR hardware and accompanying code. This example includes the Ouster_LiDAR

function block and Ouster LiDAR hardware. See the Plus+1 Compliant Ouster Block User Manual for
more information. The LiDAR hardware needs to see where the expected posts would be detected
and the code set up to include point cloud information from that area. If the LiDAR code is
programmed so the range the LiDAR sees is too small, then the code for the LiDAR must be changed
in order for Post_Detect to work.

2. Add the Post_Detect function block. Additionally, add a Data_Lockers block if it does not already
exist in the application. It can go on any page.

3. Outside of PLUS+1® GUIDE, determine physically in the environment where posts should be detected.
Posts are detected with respect to the machine as the origin. See Local Coordinate System on page 17.
Point the LiDAR laser toward the posts to begin tuning.

4. Measure the length and width of posts in the environment. Length and width refer to the X and Y
position in 2D. Height is not a factor.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

184 | © Danfoss | June 2025 AQ295075513101en-000109

5. Enter these numbers into the Post_Width and Post_Length parameters. If many posts with different
sizes need to be detected by the LiDAR, measure several posts to get an average, or enter the
numbers for the largest post. Here, these values are 350 mm and 400 mm.

The image shows a machine driving by posts (left) and the pre-made service tool screen with values
(right).

6. Enter the Tolerance, which allows Post_Detect to detect posts that are larger and smaller than the
length and width by factoring errors in posts tilting, post size difference, and LiDAR errors. Here,
Tolerance is 180 mm, so the LiDAR detects posts with lengths ranging from 170-530 mm and widths
ranging from 220 - 580 mm.

7. Tune the Min_Points_Per_Side to indicate how many LiDAR points are required to land on the post
to detect it. Here, 5 LiDAR points must land on the length side of a post and 5 points must land on the
width side.

8. Optionally, visually see the data from Post_Detect on the Pre-Made Service Tool Screens on page 25,
or view each signal individually.

a) The O_PtCld indicates the number of LiDAR data points entering Post_Detect. These points could
land on posts or anything else, as long as they are valid points. Invalid points go into the sky or the
dark and do not collect data.

b) The Processing_Time indicates how long LiDAR data takes to enter the Post_Detect, process
inside of it, and output the detected post information.

c) Post_Detect_Err indicates if an error occurs, and if so, what the error is by providing an error
number. Here, 0 indicates there is no error and everything is behaving normally.

d) X and Y indicate where the center of each post is located in relation to the LiDAR using the right-
hand rule. Here, the post closest to the LiDAR, labeled 0 in the image, is 562 mm to the left and 13
mm ahead of the LiDAR. The second post, labeled as 1 in the image, is 638 mm to the right and 2
mm behind the LiDAR. How the LiDAR is mounted factors into the position.

e) Yaw indicates how much the post itself is rotated. Here, that is not a factor.

f) The Updated box appears green when information passes into Post_Detect and red when
information does not come in.

g) Number of Features shows the number of posts detected by the LiDAR because they match the
post criteria. The first post data goes into the 0 spot of the array, the second post goes into the 1
spot, and so on. Here, 5 posts are detected.

h) Status and Fault indicate if any issues occur. Here, there are no issues.

i) Seq_ID shows which LiDAR frame the data came from. This could be used to correct for machine
motion during processing.

9. After tuning Post_Detect, create custom code for a machine to drive toward a post.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 185

Inputs

Inputs to the Post_Detect function block are described.

Item Type Range Description [Unit]

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Chkpt BOOL —— Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

The following table describes parameters for the Post_Detect function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Post_Width U16 0-1000 Expected width of post to detect.
Default: 250
[mm]

Post_Length U16 0-1000 Expected length of post to detect.
Default: 250
[mm]

Tolerance U16 0-1000 Allows the block to detect posts with length and width greater than what was entered in
Post_Width and Post_Length. Applies to both equally.
Default: 0
[mm]

Min_Points_Per_Side U16 2-1000 Minimum number of LiDAR points detected on the length and width sides of a post to
consider it valid.
Default: 5

Outputs

Outputs of the Post_Detect function block are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Processing_Time U32 0-4294967295 Time taken to process input point cloud data.
[µs]

Post_Detect_Err U8 0-4 Indicates errors occurred in the function block operation.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Point cloud is unordered.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

186 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Features BUS —— This bus contains information about features identified in the LiDAR scan that match the
criteria of a post. This includes the number of posts found, as well as the yaw, X
coordinate, and Y coordinate of each post.

Num_Features U16 0-100 Number features defines the number of valid posts found in the LiDAR scan. The valid
elements of X, Y, and Yaw are from index 0 to Num_Features-1. Any elements after this
are invalid and will be ignored.

Updated BOOL T/F Indicates that new data is available.
T: New data is available.
F: New data is not available.

X (Array[100]S3
2)

-2147483648-2147
483647

X component of the center of the posts using the right-hand rule.
[mm]

Y (Array[100]S3
2)

-2147483648-2147
483647

Y component of the center of the posts using the right-hand rule.
[mm]

Yaw (Array[100]S1
6)

-18000-18000 Rotation of the posts themselves. This is not the polar angle of the post with respect to the
LiDAR.
[0.01 deg]

Std_Dev (Array[100]U
16)

0-65535 Standard deviation refers to the errors in the post center position, along with other
uncertainty. Higher values indicate a poor fit.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Post_Detect Troubleshooting

The following table describes errors that could occur in the Post_Detect function block and ways to fix
them. View the Post_Detect_Err signal on the Service Tool screen to see if any error numbers appear. In
PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Processing_Time should be less than one microsecond.

Post_Detect_Err Descriptions and Fixes

Number Description How to Fix

0 There is no error. Nothing needs to change.

1 Cannot create background thread. Turn the controller off and on, or use less code in the application.

2 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

3 Thread timeout. The controller could be overloaded, which would
affect many blocks.

Reduce the LiDAR resolution or delete other processing blocks.

4 Point cloud is unordered. This means the data changed from
ordered to unordered so the structure of the point cloud data is
lost.

Check the code to see if the data was filtered or modified to
become unordered, and switch to the ordered output option.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Post_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 187

The Projected_Path function block detects objects ahead of a machine along a curved path.

Projected_Path requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster

Block User Manual for information about LiDARs, the Ouster LiDAR hardware, and Ouster_LiDAR function
block.

Projected_Path behaves similarly to Projected_Path_Area, except it only detects objects within the
zones rather than their cross-sectional area. See Projected_Path_Area Function Block on page 191 to read
about the functionality, application recommendations, and an example. Some parameters and outputs
change due to the area calculations.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

Inputs

Inputs to the Projected_Path function block are described.

Item Type Range Description [Unit]

PtCld S8 -1-99 The data locker ID of ordered or unordered point cloud data.

Curvature S32 -800000-800000 Curvature of the circle where the zones to be evaluated are positioned.
[0.01/km]

Chkpt BOOL —— Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path Function Block

188 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The following table describes parameters for the Projected_Path function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Width U16 0-65535 Width of the zones. All zones have the same width.
Default: 1000
[mm]

Min_Distance U16 0 to
Max_Distance-1

Distance between the steering point of the machine and the start of the first zone. Create
enough distance to avoid the zone overlapping the machine.
Default: 0
[mm]

Max_Distance U16 Min_Distance+1
to 65535

Distance between the steering point of the machine and the end of the last zone.
Default: 1000
[mm]

Min_Height S32 -50000 to
Max_Height-1

Minimum height of the zones with respect to the steering point. All zones have the same
height.
Default: 0
[mm]

Max_Height S32 Min_Height+1 to
50000

Maximum height of the zones with respect to the steering point. All zones have the same
height.
Default: 1000
[mm]

Sensor_Orientation S16 -18000-18000 Rotation of the LiDAR scanner around the z-axis in relation to the machine.
Default: 0
[0.01 deg]

Sensor_Offset_X S32 -2147483648-2147
483647

The distance from the steering point of the machine along the x-axis to the LiDAR scanner.
LiDARs in front of the steering point have positive values and in back have negative
values.
Default: 0
[mm]

Sensor_Offset_Y S32 -2147483648-2147
483647

The distance from the steering point of the machine along the y-axis to the LiDAR scanner.
LiDARs to the left of the steering point have positive values and to the right have negative
values.
Default: 0
[mm]

Sensor_Offset_Z S32 -2147483648-2147
483647

The distance from the steering point of the machine along the z-axis to the LiDAR scanner.
LiDARs above the steering point have positive values and below have negative values.
Default: 0
[mm]

Outputs

Outputs of the Projected_Path function block are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 189

Item Type Range Description [Unit]

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x0001: Input value too low.
0x8002: Input value too high.

Output BUS —— The Output bus contains the score information for each zone being evaluated.

Updated BOOL T/F New information is available from the block.
T: New data is available.
F: New data is not available.

Scores (Array[5]U32) 0-4294967295 The number of valid LiDAR points within each zone box.

Total_Valid_Points U32 0-4294967295 The number of valid LiDAR points. These obtain data when landing on objects. An
unusually low number may indicate issues. Invalid points include LiDAR points going into
the sky or dark surfaces, which are not detected by the LiDAR.
For ordered point clouds, this is the number of valid LiDAR points found within and close
to the zones. LiDAR points are counted multiple times if zones overlap.
For unordered point clouds, this is the number of valid LiDAR points the LiDAR sees in the
whole point cloud, regardless of zones.

Sum_Scores U32 0-4294967295 Sum of all counts of points within all zones.

Highest_Score U32 0-4294967295 Count of points within the zone that had the most points.

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path Function Block

190 | © Danfoss | June 2025 AQ295075513101en-000109

The Projected_Path_Area function block shows a machine what is ahead of itself, allowing it to react
based on how close an object is to the machine. The block detects the cross-sectional area of objects
along a curved path.

This block requires a license for A+ Advanced.

Projected_Path_Area requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant

Ouster Block User Manual for information about LiDARs, the Ouster LiDAR hardware, and Ouster_LiDAR

function block.

Use this block to decelerate or stop a machine. The type of machine does not matter. Ideal environments
include smooth rather than bumpy surfaces or the LiDAR could pitch too much and give bad data from
the zones. The code works better with gradual turns rather than sharp turns, depending on machine size
and attributes.

Information about the environment in front of the machine enters Projected_Path_Area as a point
cloud. Additionally, information about the path the machine travels enters the block as a curvature. This
allows the machine to see items on the path ahead of itself, and other code determines how the machine
reacts.

This block detects objects within five zone boxes in front of a machine: 0, 1, 2, 3, and 4. The machine can
be programmed to react differently depending on the results of each zone. There will always be five
zones, but if a machine does not need all of them, it should ignore the results in the unwanted zones.
Then, the machine will not react to anything detected in them.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 191

The image above shows a machine traveling along a curved path with five zones ahead of it. Zones
overlap along the curve. Objects in multiple zones are counted multiple times.

Parameters involve setting up the zone box dimensions. Zones should be wider than the machine to
avoid clipping items as the machine turns. Dimensions include the distance where zones begin ahead of
the machine and where they end, as well as the zone minimum and maximum height. Zones are in
relation to the machine's origin, referred to as the steering point in ACL.

The image above shows a machine with the steering point near the back wheel, a LiDAR scanner on top,
and five zones in front. The array of zones begin and end based on the distance from the steering point.
The same minimum and maximum height applies to all five zones.

The LiDAR also needs to align with the machine's steering point as the origin. Set alignment
measurements in the Sensor_Offset_X, Sensor_Offset_Y, and Sensor_Offset_Z parameters. See
Machine Coordinate System on page 18.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

192 | © Danfoss | June 2025 AQ295075513101en-000109

The images above show the top and side view of a rear wheel steering machine with two LiDARs. The
LiDARs connect based on the machine's steering point as the origin. LiDARs above, to the left, or ahead of
the steering point use a positive distance parameter value. LiDARs below, to the right, or behind the
steering point use a negative distance parameter value.

Besides the machine's steering point, the LiDAR mounting position is extremely important. If the LiDAR is
rotated so it does not face the front of the machine, that rotation needs to be offset in the
Sensor_Orientation parameter in order for the LiDAR to see the zones ahead of the machine. For
example, if a LiDAR was mounted rotated 45 degrees from the machine front, then enter -45 degrees to
offset the rotation to zero. See Sensor Coordinate System on page 19.

Projected_Path_Area detects the approximate cross-sectional area of items within the zones ahead of
the machine, whereas the simpler Projected_Path function block only detects when an object is in the
zone, not the size.

Area estimation depends on the number of LiDAR points landing on objects, so neither the surface area
nor the exact cross-sectional area can be determined. However, the block calculations adjust for objects
far away or close to the LiDAR to give a rough size estimate. For example, if a bird flies close to the LiDAR,
lots of LiDAR points land on it, but the block knows it is still small. A building in the distance with a few
LiDAR points still reads as a large object. If there are multiple objects within a zone, the Areas output
combines them all. If objects overlap in zones, they are counted multiple times inside the overlap.

Reflective items around the LiDAR could reduce its ability to estimate the object's cross-sectional area.

Additionally, Projected_Path_Area only takes in ordered point cloud data and not unordered. However,
Projected_Path supports both ordered and unordered point cloud data.

Application Information

Common function blocks used with the Projected_Path_Area function block are Data_Lockers,
Path_Follower, and the Ouster_LiDAR function block if using Ouster LiDAR hardware.

Projected_Path_Area always needs a LiDAR and Data_Lockers. It usually comes last in a sequence but
needs custom code after it telling the machine how to react when something is detected in a zone.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 193

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as Ouster LiDAR
hardware and the Ouster_LiDAR function block. This gathers point cloud data which
Projected_Path_Area uses to detect when something is in a zone. Path_Follower runs in parallel.
This combination checks if the machine traveling on the path is going to hit something in the zones
based on steering.

2. Scenario two shows data from the wheel sensor going into the Angle_To_Curv function block, which
runs in parallel to LiDAR code. In an Ackermann machine, this combination checks if the machine will
hit something in the zones based on where the wheels are pointing. Information comes live from a
wheel sensor instead of an actual path. This works with both autonomous and manual operation. The
LiDAR detects objects in the zones.

3. Scenario three shows the Obstacle_Detect function block, which would use information gathered
from the LiDAR, but otherwise runs separately from Projected_Path_Area. Use Obstacle_Detect if
setting up zones outside of where Projected_Path_Area covers, such as zones on the machine's side.

Additionally, place the Projected_Path_Area function block:
• After LiDAR data is collected, such as after the Ouster_LiDAR function block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.

Example

The example shows the Projected_Path_Area function block used as if a machine should gradually
decelerate and stop when detecting something in the zones in front of it.

1. Set up the LiDAR hardware and accompanying code. This example includes the Ouster_LiDAR

function block and Ouster LiDAR hardware. See the Plus+1 Compliant Ouster Block User Manual for
more information. The LiDAR hardware needs to see where the expected obstacles would be
detected and the code set up to include point cloud information from that area. If the LiDAR code is
programmed so the range the LiDAR sees is too small, then the code for the LiDAR must be changed
in order for Projected_Path_Area to work.

2. Add the function blocks. Here, the Ouster_LiDAR function block connects into
Projected_Path_Area to send ordered point cloud information from the LiDAR. Path_Follower

connects into the Curvature input to send path information.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

194 | © Danfoss | June 2025 AQ295075513101en-000109

3. Additionally, add a Data_Lockers block if it does not already exist in the application. It can go on any
page.

4. Outside of PLUS+1® GUIDE, check that the LiDAR hardware faces the front of the machine without
rotation. If rotated, account for the rotation in the Sensor_Orientation parameter to bring the
rotation degree to zero. The LiDAR should be able to see the zones in front of the machine and may
need to be physically moved or have its field-of-view changed in earlier code.

5. Measure the distance from the machine's steering point to the LiDAR eye along the x-axis, y-axis, and
z-axis.

The images above depict a top-down and side view of a machine driving in the direction of the
arrows. It includes a LiDAR on top and the steering point between the back wheels.

6. Enter the measurements from the steering point to the LiDAR in the sensor offset parameters. Here,
Sensor_Offset_X is 400 mm in the positive direction, Sensor_Offset_Y is -200 mm in the negative
direction, and Sensor_Offset_Z is 800 mm in the positive direction.

7. Measure from the steering point to where the series of zone boxes should start and end. The zones
should avoid overlapping the machine, and they should stay within the LiDAR hardware's range of
view. Here, the minimum and maximum distances of the zones are 900 mm to 3000 mm.

The image above shows a side view of the zones in front of the machine.

8. Enter the desired Width of the zones. All zones have the same width, and this should be slightly
larger than the machine.

9. Enter the height of the zones, which is in relation to the steering point but also needs to be within the
LiDAR scanner's field-of-view. The LiDAR sees the zones and sends information back to the steering

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 195

point for the machine to react. The height should be high enough off the ground to avoid detecting
small items the machine runs over, like gravel. Height should avoid detecting any ceilings and
anything hanging. Here, height is 100 mm to 850 mm.
Five zones automatically build after the parameters are filled out. Zones will be slightly curved
because they are tied to the wheel curvature. View more detailed zone dimensions in the Internals

section on the Pre-Made Service Tool Screens on page 25.

10. Create code to connect to the Projected_Path_Area output.

a) Update shows if there is new information processing within Projected_Path_Area. Here, the
machine will stop if there is no new information for a while.

b) Total_Valid_Points is the number of valid LiDAR points in and close to the zones. Here, if this
number is very low, then the machine will stop.

c) Sum_Areas includes the approximate cross-sectional area of all objects detected in all five zones
added together. This helps the machine recognize if there is a large obstacle ahead because it is
not cut into smaller sections of the zones. However, many small objects could add up to a big area
and give a false positive. Here, the machine will stop if a large obstacle is in the path ahead.

d) Areas includes the approximate cross-sectional area of objects within individual zones. Here, the
machine stops if it detects an object closest to it in Zone 0. The machine slows down if an object is
in Zone 1, and it honks if an object is in Zone 2. The machine does not react if objects are in Zone 3
or 4.

e) Leave any unneeded outputs unconnected.

11. Monitor the Updated flag to ensure new information comes through. If this stops updating, then the
block is not processing data.

Inputs

Inputs to the Projected_Path_Area function block are described.

Item Type Range Description [Unit]

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Curvature S32 -800000-800000 Curvature of the circle where the zones to be evaluated are positioned.
[0.01/km]

Chkpt BOOL —— Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

196 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The following table describes parameters for the Projected_Path_Area function block.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Width U16 1-20000 Width of the zones. All five zones have the same width.
Default: 1000
[mm]

Min_Distance U16 0 to
Max_Distance-1

Distance between the steering point of the machine and the start of the first zone. Create
enough distance to avoid the zone overlapping the machine.
Default: 0
[mm]

Max_Distance U16 Min_Distance+1
to 65535

Distance between the steering point of the machine and the end of the last zone.
Default: 1000
[mm]

Min_Height S32 -50000 to
Max_Height-1

Minimum height of the zones with respect to the steering point. All zones have the same
height.
Default: 0
[mm]

Max_Height S32 Min_Height+1 to
50000

Maximum height of the zones with respect to the steering point. All zones have the same
height.
Default: 1000
[mm]

Sensor_Orientation S16 -18000-18000 Rotation of the LiDAR scanner around the z-axis in relation to the machine.
Default: 0
[0.01 deg]

Sensor_Offset_X S32 -2147483648-2147
483647

The distance from the steering point of the machine along the x-axis to the LiDAR scanner.
LiDARs in front of the steering point have positive values and in back have negative
values.
Default: 0
[mm]

Sensor_Offset_Y S32 -2147483648-2147
483647

The distance from the steering point of the machine along the y-axis to the LiDAR scanner.
LiDARs to the left of the steering point have positive values and to the right have negative
values.
Default: 0
[mm]

Sensor_Offset_Z S32 -2147483648-2147
483647

The distance from the steering point of the machine along the z-axis to the LiDAR scanner.
LiDARs above the steering point have positive values and below have negative values.
Default: 0
[mm]

Outputs

The following table describes outputs for the Projected_Path_Area function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 197

Item Type Range Description [Unit]

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x0001: Input value too low.
0x8002: Input value too high.

Output BUS —— The Output bus contains information for each zone being evaluated.

Updated BOOL T/F New information is available from the block.
T: New data is available.
F: New data is not available.

Areas (Array[5]U32) 0-4294967295 The approximate cross-sectional area of objects within a zone.
[mm2]

Total_Valid_Points U32 0-4294967295 The number of valid LiDAR points. These obtain data when landing on objects. An
unusually low number may indicate issues. Invalid points include LiDAR points going into
the sky or dark surfaces, which are not detected by the LiDAR.
For ordered point clouds, this is the number of valid LiDAR points found within and close
to the zones. LiDAR points are counted multiple times if zones overlap.

Sum_Areas U32 0-4294967295 The cross-sectional areas of all objects within all zones added together.
[mm2]

Largest_Area U32 0-4294967295 The cross-sectional area inside of whichever zone has the largest cross-sectional area.
[mm2]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Internal Signals

The following table describes what happens internally in the Projected_Path_Area function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Projected_Path_Area

_Err

U8 0-5 Indicates when an error occurred in the block functionality.
See Projected_Path_Area Troubleshooting on page 199

Num_Zones U8 0-5 The number of zones. There should always be five zones. Anything other than five means
data in the arrays are invalid.

Zone_X (Array[5]S32) -2147483648-2147
483647

X component of Cartesian location of the zone's center. Use this to help visualize where
the zones are located and if they are where they are supposed to be.
[mm2]

Zone_Y (Array[5]S32) -2147483648-2147
483647

Y component of Cartesian location of the zone's center. Use this to help visualize where
the zones are located and see if they are where they are supposed to be.
[mm2]

Zone_Z (Array[5]S32) -2147483648-2147
483647

Z component of Cartesian location of the zone's center. Use this to help visualize where
the zones are located and if they are where they are supposed to be.
[mm2]

Zone_Orientation (Array[5]S16) -18000-18000 Rotation of the zone around the LiDAR scanner's z-axis. If the LiDAR is already rotated
when mounted, then this value begins at the rotated number and not zero. Each of the
five zones should have a different value because of the curvature.
[0.01 degree]

Zone_Length (Array[5]U16) 0-65535 Length of an individual zone. Each of the five zones should have the same length.
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

198 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Zone_Width (Array[5]U16) 1-20000 Width of an individual zone. Each of the five zones should have the same width.
[mm]

Processing_Time U32 0-4294967295 The amount of time taken for the function block to receive data, process it, and produce a
new point cloud.
High processing time increases the latency for downstream function blocks, and machines
react slower as the processing time increases.
[µs]

Projected_Path_Area Troubleshooting

The following table describes errors that could occur in the Projected_Path_Area function block and
ways to fix them.

View the Projected_Path_Area_Err signal on the Service Tool screen to see if any error numbers appear.
In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Projected_Path_Area_Error Descriptions and Fixes

Number Description How to Fix

0 No errors. Nothing needs to change.

1 Cannot create background thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

2 Not enough memory available to create thread. This may be caused by too many Autonomous Control Library
blocks. Use less than 100 ACL blocks.
Turn the controller off and on, or use less code in the application.

3 Thread timeout. There may be too much code creating a longer processing time.
Reduce the LiDAR resolution or delete other processing blocks.
See Reduce Processing Time on page 174. Turn the XM100 off, wait
a bit, and restart it.

4 Point cloud is unordered. This means the point cloud data
entering the block is unordered instead of ordered. Ordered LiDAR
points include X, Y, and Z coordinates, whereas unordered LiDAR
points have no coordinate data.

Change the point cloud data to ordered by reviewing previous
code that caused it to become unordered. If unordered data is
needed, use another block that does not need ordered point
cloud data, such as Projected_Path.

5 Point cloud has invalid size. This means that the point cloud
dimension is so small it may only have one row or column.

Expand the parameters in previous blocks to have a larger point
cloud. Look especially in filtering blocks or the LiDAR code.

Other Errors and Fixes

Error Description How to Fix

Zones do not pick up objects. Check the parameters for the zones and adjust the numbers. Review the
coordinates of the LiDAR. Test the edges of the zones by moving an object
into and out of the zones.

The Areas output seems too small for the situation. If an object has a reflector close to or on it, then this block may report a
smaller cross-sectional area than it should. Move or adjust the reflector. Try
different LiDARs or adjust the LiDAR settings. Or, account for the reduced
Areas values in other code.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Projected_Path_Area Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 199

The Reflector_Detect function block finds reflective objects, which allows a machine to drive toward or
away from the objects or use the objects as a localization base.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about LiDARs, the Ouster LiDAR hardware, and Ouster_LiDAR function
block.

The Reflector_Detect function block works with either 2D or 3D LiDAR sensors. It searches an incoming
LiDAR scan for features that meet the criteria of a reflector and outputs the center locations and
properties of those reflectors. For best results, use Reflector_Detect to identify rectangular or circular
shapes rather than other shapes.

The image below depicts reflective surfaces Reflector_Detect identifies, such as retroreflector lights and
tape. Reflectors must be big enough for LiDAR points to land on them.

Watch out for unintentional reflective objects in the LiDAR hardware's environment that could confuse
the application, such as reflective clothing from someone walking by, glare off metal or the floor, or
shapes that are not circular or rectangular.

Paired with other function blocks in PLUS+1® GUIDE, Reflector_Detect enables a machine to navigate in
an environment where reflectors are present as navigation cues. After reflective objects are detected,
program a machine to drive toward or away from them, or use the reflectors as a base for localization. See
Local Coordinate System on page 17.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

200 | © Danfoss | June 2025 AQ295075513101en-000109

LiDAR points from a point cloud are filtered based on their locations and reflective property (intensity).
Then, LiDAR points are grouped to represent individual reflectors. Locations of reflectors are defined to
be at the centers of these detected point groups.

The image shows the LiDAR hardware (green dot) scanning a surface and projecting a row of LiDAR
points (blue dots) in a ring row. Some of these LiDAR points detect reflectors (red dots) based on criteria
in Reflector_Detect.

Reflectors are identified from the intensity of a reflected ray of light. The Min_Num_Points determines if
the reflective object counts as a reflector based on the number of LiDAR points that fall on it. For
example, if the Min_Num_Points value entered is 5 and only 3 LiDAR points land on the object, then
Reflector_Detect does not consider the object a reflector. The Distance_Tolerance separates the
reflectors from each other on the (X, Y) plane.

When the Distance_Tolerance is smaller than the difference between the distance of two LiDAR points,
Reflector_Detect distinguishes them as two different reflectors. When the Distance_Tolerance is larger,
the two reflectors are merged into one, so the Num_Features detected is one.

The image shows how Num_Features changes depending on the distance between the LiDAR and the
reflective shapes it detects. Distance_Tolerance accounts for the difference in distance between how
close or far away LiDAR points are to the hardware, not necessarily how far away reflectors are from each
other or if they are in the same point cloud ring row.

Z_Tolerance involves reflectors on the z-axis, which is ground to sky in relation to the LiDAR. Specifically,
Z_Tolerance is the distance between the centers of vertically stacked reflectors to determine if they are
combined into one reflector or kept as separate reflectors, which also affects the Num_Features count.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 201

The image shows a LiDAR and three reflectors. The Z_Tolerance parameter is set to 55 mm. The distance
between the centers of Reflector_1 and Reflector_2 is 85 mm, and 40 mm between Reflector_2 and
Reflector_3. Reflector_Detect considers Reflector_1 and Reflector_2 as separate reflectors because they
are further apart than 55 mm, but Reflector_2 and Reflector_3 are considered as one reflector.

These hard-coded criteria determine how reflectors are identified:
• A ring row from the LiDAR scan requires at least two LiDAR points.
• At least 90% of points in a detected reflector must have intensity ratings greater than the

Intensity_Threshold value.
• At least 90% of points in a detected reflector must be within the Distance_Tolerance value from

adjacent points.
• The maximum percentage of points allowed is 10% intensity. Avoid noise and blooming.
• If a point has distance beyond the distance tolerance from the previous point, it's invalid.
• If the center of the reflector is too far from the next ring, it reads as two reflectors.

Additionally, for best results, keep a radial distance of 1.5 meters between the reflector and LiDAR to
avoid a blooming effect. To use Reflector_Detect as a localization source without any tracking algorithm,
keep the relative motion between the LiDAR and reflector to less than 0.5 m/s.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value on page 34 for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

Application Information

Common function blocks used with the Reflector_Detect function block are Data_Lockers,
LiDAR_Mask, and Obstacle_Avoidance. Reflector_Detect also requires LiDAR hardware with
accompanying code.

Reflector_Detect uses LiDAR hardware to spot reflective surfaces, known as retroreflectors. Some basic
Reflector_Detect combinations include:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

202 | © Danfoss | June 2025 AQ295075513101en-000109

1. Scenario one shows a piece of LiDAR hardware and the accompanying code, such as Ouster LiDAR
hardware and the Ouster_LiDAR function block. LiDARs send out laser points which detect reflective
surfaces. Reflector_Detect determines where these reflective objects are in relation to the LiDAR
hardware, and the algorithm determines the number of objects. Program a machine to react to the
detected reflectors.

2. Scenario two includes the LiDAR_Mask function block after the LiDAR code, followed by the
hardware detecting a reflective object. LiDAR_Mask omits certain data from the LiDAR's point cloud,
saving processing time. Then, Reflector_Detect determines the validity of the detected objects and
how many reflective features exist. Program a machine to react to the detected reflectors.

3. Scenario three includes custom code after Reflector_Detect, which tell the block how to process the
data for the machine to avoid objects in Obstacle_Avoidance.

Additionally, place the Reflector_Detect function block:
• After LiDAR data is collected, such as after the Ouster_LiDAR function block.
• With one Data_Lockers block, version 1.11 or later, which can be on any page in the application.

Example

The example shows the Reflector_Detect function block used as if a machine needs to find a reflective
object to drive toward.

1. Set up the LiDAR hardware and accompanying code. This example includes the Ouster_LiDAR

function block and Ouster LiDAR hardware. See the Plus+1 Compliant Ouster Block User Manual for
more information. The LiDAR hardware needs to see where the expected reflectors would be
detected and the code set up to include point cloud information from that area. If the LiDAR code is
programmed so the range the LiDAR sees is too small, then the code for the LiDAR must be changed
in order for Reflector_Detect to work.

2. Add the Reflector_Detect function block. Additionally, add a Data_Lockers block if it does not
already exist in the application. It can go on any page.

3. Outside of PLUS+1® GUIDE, determine physically in the environment where reflectors should be
detected. Reflectors are detected with respect to the LiDAR hardware as the origin. See Sensor

Coordinate System on page 19. Point the LiDAR laser toward the reflective objects to begin tuning.

Image A shows a top down view of a machine with a LiDAR on the front. Image B shows the same
machine from a side view. The LiDAR detects two reflectors, depicted as rectangles.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 203

4. Tune the Intensity_Threshold parameter in Reflector_Detect. LiDAR points hit a reflective surface
and reflect back with a certain intensity depending on the brightness of the reflector. Set the
Intensity_Threshold percentage to pick up the number of desired reflective surfaces. Low intensity
detects more reflectors but could also detect reflectors that do not exist. High intensity makes it
harder for the LiDAR to detect reflectors but could be more accurate.

Each type of LiDAR hardware detects reflector brightness differently. Consult the intensity scale in the
LiDAR hardware documentation when tuning Reflector_Detect to determine an appropriate
intensity threshold for the application.

5. Tune the Min_Num_Points parameter. This number depends on the LiDAR hardware resolution.
Higher values mean more LiDAR points are required to detect a reflector, so the reflectors may need
to be large in size. Setting a big number reduces the chance a LiDAR detects something that is not
there. A very low number detects small reflectors but could also detect reflectors that do not exist.

6. Tune the Distance_Tolerance parameter. This is the difference in distance between two reflective
LiDAR points on the (X, Y) plane to determine if there is one or more objects. The distance is not
between two reflectors but measured as points close or far from the LiDAR hardware. If this number is
too small, it may separate items that should be one item. A large number may combine reflectors
together that should be separate. Tune to pick up the correct number of features.

7. Tune the Z_Tolerance parameter. This is the distance between the centers of vertically stacked
reflectors on the z-axis to determine if reflectors should be combined into one or separated. Measure
the distance physically between the reflectors in the environment to decide which numbers to enter,
depending on if the reflectors need to be separated or combined. Here, the distance between
reflectors is 900 mm on the z-axis, so entering a number smaller than 900 mm allows the reflectors to
be two.

8. Optionally, visually see the data from Reflector_Detect on the Pre-Made Service Tool Screens on page
25, or view each signal individually. In this example, the LiDAR picks up two reflectors and shows the
data about them as feature outputs of the function block.

a) The Updated signal pulses True to indicate new data in the arrays and processing completed. This
could mean zero or many reflective features were detected.

b) Num_Features tells the number of reflective objects detected and puts the coordinates into the
arrays associated with the number. This example shows two Num_Features detected. The first
number in the all the arrays in Reflector_Detect relate to the first reflector detected closest to the
LiDAR hardware, labeled as Reflector 0 in the image because the range starts at 0. The second
number in all the arrays relates to the second reflector, labeled as Reflector 1 in the image.
Reflectors in arrays are sorted based on their distances closest to farthest from the LiDAR
hardware.

c) X, Y, and Z show the center position of each reflector. Coordinates follow the right-hand rule with
respect to the LiDAR hardware as the origin. See Sensor Coordinate System on page 19. The
example shows the X array as (1200, 2100) because the two reflectors are that far in front of the
LiDAR in a positive x-axis direction. Y shows (1000, -700) because Reflector 0 is 1000 mm away
from the LiDAR center in the y-axis positive direction, and Reflector 1 is 700 mm away from the
LiDAR center in the y-axis negative direction. Z refers how far the reflectors are up and down from
the LiDAR, listed as (500, -400) in the array. Reflector 0 is 500 mm in the positive z-axis direction
from the LiDAR center, and Reflector 1 is 400 mm below the LiDAR center in a negative z-axis
direction.

d) Std_Dev_X, Std_Dev_Y, and Std_Dev_Z guess how far off the location of points are from the
center of reflectors, depicting a level of confidence. High numbers indicate higher location
uncertainty, and Reflector_Detect should be tuned more. In this example, Reflector 1 shows a
high standard deviation in Y and Z fields, with Z possibly in the range of -300 to -500 mm on the z-
axis because it could be deviated 97 mm in both directions from its center. Reflector 0 shows more
confidence in the detected location in all fields. Here, Std_Dev_Z of 8 means the reflectors could
be between 492 to 508 mm on the z-axis. These signals take into account the number of LiDAR
points that land on the reflectors to find the center, but this is affected by distance and noise
around the LiDAR. This example assumes the reflectors are both flat and unbent.

If the standard deviation numbers are extremely high in the thousands, then the reflectors may be
on the edge of the LiDAR's field-of-view. Either physically move the LiDAR or change the field-of-
view in the LiDAR code.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

204 | © Danfoss | June 2025 AQ295075513101en-000109

e) Num_Points tells how many LiDAR points were detected on the reflective feature. More points
mean more confidence that it is a valid feature, and it might correlate with a larger or closer object
to the LiDAR. Less points mean less confidence, a far away object, or small object.

f) Width of a reflector shows the total distance of the reflector shape and not just the center. This is
based on where the LiDAR points fall on the largest LiDAR ring row detected, so Width might not
exactly match the reflector's actual width.

g) Height of a reflector shows the total height of the reflector, calculated by measuring the distance
between the LiDAR's highest and lowest point cloud rings detected on the reflector.

h) Seq_ID shows which LiDAR frame the data came from. This could be used to correct for machine
motion during processing.

9. After tuning Reflector_Detect, create custom code for a machine to drive toward a reflector. Filter
based on where a reflective object is expected to be located or its size. There are a lot of things in this
block that determine whether an object is valid for the given use case.

Inputs

Inputs to the Reflector_Detect function block are described.

Item Type Range Description [Unit]

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

Parameters to the Reflector_Detect function block are described.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Intensity_Threshold U16 1-10000 Minimum intensity of LiDAR points required to consider it reflective.
Default: 5000
[0.01%]

Min_Num_Points U16 1-500 The minimum number of LiDAR points required to land on an object to determine if it is a
reflector. This is the total number of points across all ring rows.
Default: 10

Distance_Tolerance U16 1-1000 The difference in radial distance between two LiDAR points to determine if there are one
or two reflectors. The difference in distance is based on how close or far away LiDAR
points are to the LiDAR hardware.
Default: 50
[mm]

Z_Tolerance U16 1-1000 Distance between the centers of vertically stacked reflectors to determine if the reflectors
should be combined into one reflector or separated into two reflectors. Values higher than
this number are separated and values lower are combined into one reflector.
Default: 50
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 205

Outputs

Outputs of the Reflector_Detect function block are described.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Processing_Time U32 0-4294967295 Time taken to process input point cloud data.
[µs]

Reflector_Detect_Err U8 0-5 Indicates errors occurred in the function block operation.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Point cloud is unordered.
5: Detected reflector is at the edge of the LiDAR scan.

Status U16 —— The status of the function block.
Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Features BUS —— This BUS contains information about the reflectors identified in the LiDAR scan. This
includes reflector width, X, Y, and Z coordinates, and standard deviation in Cartesian
coordinates.

Updated BOOL T/F Updated signal is set to True if new point cloud data has been processed.
T: New data is available.
F: New data is not available.

Num_Features U16 0-100 The number of reflectors detected. Array numbers go in order of reflectors closest to
farthest from the LiDAR hardware.

X (Array[100]S3
2)

-2147483648-2147
483647

Point on the x-axis showing the center position of each detected reflector. X uses the
Cartesian coordinate system with respect to the LiDAR scanner as origin.
[mm]

Y (Array[100]S3
2)

-2147483648-2147
483647

Point on the y-axis showing the center position of each detected reflector. Y uses the
Cartesian coordinate system with respect to the LiDAR scanner as origin.
[mm]

Z (Array[100]S3
2)

-2147483648-2147
483647

Point on the z-axis showing the center position of each detected reflector. Z uses the
Cartesian coordinate system with respect to the LiDAR scanner as origin.
[mm]

Std_Dev_X (Array[100]U
16)

0-65535 Standard deviation of the reflector center along the x-axis in relation to the LiDAR. Higher
numbers indicate the reflector could be located further away from what the X coordinate
reading says.
[mm]

Std_Dev_Y (Array[100]U
16)

0-65535 Standard deviation of the reflector center along the y-axis in relation to the LiDAR. Higher
numbers indicate the reflector could be located further away from what the Y coordinate
reading says.
[mm]

Std_Dev_Z (Array[100]U
16)

0-65535 Standard deviation of the reflector center along the z-axis in relation to the LiDAR. Higher
numbers indicate the reflector could be located further away from what the Z coordinate
reading says.
[mm]

Num_Points (Array[100]U
32)

0-4294967295 The number of LiDAR points detected on the reflectors. More points mean the reflector is
large, close to the LiDAR, or more confidence that the feature is a reflector.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

206 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Width (Array[100]U
16)

0-65535 The total reflector width, calculated by using the LiDAR points in the widest detected
point cloud ring.
[mm]

Height (Array[100]U
16)

0-65535 The total reflector height, calculated by using the LiDAR points between the highest and
lowest point cloud rings detected on the reflector.
[mm]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

Reflector_Detect Troubleshooting

The following table describes errors that could occur in the Reflector_Detect function block and ways to
fix them. View the Reflector_Detect_Err signal on the Service Tool screen to see if any error numbers
appear. In PLUS+1® GUIDE, this signal is on the Checkpoints page in the Internal Signals column.

Processing_Time should be less than one microsecond.

Reflector_Detect_Err Descriptions and Fixes

Number Description How to Fix

0 There is no error. Nothing needs to change.

1 Cannot create background thread. Turn the controller off and on, or use less code in the application.

2 No memory available. This varies with the type of hardware and
may happen with non-XM100 hardware.

Turn the controller off and on, or use less code in the application.

3 Thread timeout. The controller could be overloaded, which would
affect many blocks.

Reduce the LiDAR resolution or delete other processing blocks.

4 Point cloud is unordered. This means the data changed from
ordered to unordered so the structure of the point cloud data is
lost.

Check the code to see if the data was filtered or modified to
become unordered, and switch to the ordered output option.

5 The detected reflector is at the edge of the LiDAR scan. This means
that when the LiDAR scan occurred, a reflector appeared at the
edge of the LiDAR's field-of-view on the x-axis, y-axis, or z-axis. The
LiDAR cannot determine information about the reflector because
the majority of the reflector is outside what it sees.

Physically move the LiDAR hardware to see the reflector better or
adjust the code to expand the LiDAR's field-of-view.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Reflector_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 207

The Relative_Pos function block calculates the relative position between the machine's current position
and the machine's origin position.

Input data types must exactly match the indicated type to successfully compile.

The Checkpoints page includes advanced checkpoints for each input, output and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name.

The Updated variable in the Origin bus and in the UTM bus must both go True at least once before the
outputs to this function block are updated.

Inputs

Inputs to the Relative_Pos function block are described.

Item Type Range Description [Unit]

Std_Dev BUS —— Contains UTM data for the origin.

X_Std_Dev U32 1-4294967295 The standard deviation of X.
[mm]

Y_Std_Dev U32 1-4294967295 The standard deviation of Y.
[mm]

Origin BUS —— The UTM data for the machine's origin point.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.

Zone U8 1-60 The zone that the UtmX and UtmY values are in.

Band U8 67-72, 74-78,
80-88

The band that the UtmX and UtmY values are in.
ASCII values represent the letter of the band.

Updated BOOL T/F True when there is new position data ready. Update the outputs.
T: Calculate relative position with the new data. Update outputs.
F: Do not calculate new position. Do not update outputs.

UTM BUS —— UTM data for the current position.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Relative_Pos Function Block

208 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

UtmX U32 0-10⁹ The UTM Easting (X) value of the machine's current position.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the machine's current position.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.

Zone U8 1-60 The zone that the UtmX and UtmY values are in.

Band U8 67-72, 74-78,
80-88

The band that the UtmX and UtmY values are in.

Updated BOOL T/F True when there is new data ready and the outputs are updated.
T: Calculate the relative position of the machine. Update the outputs.
F: Do not calculate the relative position. Do not update outputs.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Outputs

Outputs of the Relative_Pos function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.
0x8010: Input value is out of range.

ValidRelUtm BOOL T/F When True, the zones from the Origin and UTM buses match. Both update flags have been
True at least once. There are no faults.
When False, UtmX and UtmY are both set to 0.
T: The zones from the Origin and UTM match.
F: The zones do not match or the origin is invalid and outputs are 0.

Pos_XY BUS —— Data about the relative position calculated in the function block and its standard
deviation.

X S32 -2147483648-2147
483647

The relative X distance between the origin and the current position.
[mm]

Y S32 -2147483648-2147
483647

The relative Y distance between the origin and the current position.
[mm]

Updated BOOL T/F True when new data is available from the conversion.
T: New data is available.
F: New data is not available.

X_Std_Dev U32 1-4294967295 The standard deviation of X.
[mm]

Y_Std_Dev U32 1-4294967295 The standard deviation of Y.
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Relative_Pos Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 209

The Transform_3D function block transforms a 2D or 3D point cloud into a format that is compatible
with the coordinate system of a machine as defined by the parameters.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about the Ouster LiDAR scanner and block.

Each point in a point cloud contains coordinate information. This is referred to as an ordered point cloud.
Transform_3D takes ordered point cloud data and removes the information, condensing the point cloud
to save processing time. This is referred to as an unordered point cloud. After the point cloud becomes
unordered, it can never become ordered again.

The function block has the following limitations:

• The function block is unable to scale the point cloud during a conversion. It performs only rigid
transformations.

• During the transformation, the distance between the transformed points compared to the origin of
the new coordinate system might be different than the maximum/minimum range defined in the
sensor attributes. In this case, the maximum/minimum range defined in the sensor attributes is
overwritten so that all points of the cloud fit into this range.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

Inputs

The following table describes input signals in the Transform_3D function block.

Item Type Range Description [Unit]

PtCld S8 -1 - 99 The data locker ID of ordered or unordered point cloud data.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_3D Function Block

210 | © Danfoss | June 2025 AQ295075513101en-000109

Parameters

The following table describes parameters in the Transform_3D function block.

Item Type Range Description [Unit]

X S32 -2147483648 -
2147483647

Specifies the translation along the X axis.
[mm]
Default: 0

Y S32 -2147483648 -
2147483647

Specifies the translation along the Y axis.
[mm]
Default: 0

Z S32 -2147483648 -
2147483647

Specifies the translation along the Z axis.
[mm]
Default: 0

Roll S16 -18000 - 18000 Sets the rotation around the X axis.
[0.01 deg]
Default: 0

Pitch S16 -18000 - 18000 Sets the rotation around the Y axis.
[0.01 deg]
Default: 0

Yaw S16 -18000 - 18000 Sets the rotation around the Z axis.
[0.01 deg]
Default: 0

Outputs

The following table describes outputs in the Transform_3D function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Status U16 —— Reports the status of the function block.
It is a bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range.
0x8100: Invalid ECU.

Fault U16 —— Reports the faults of the function block.
It is a bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

U_PtCld S8 -1 - 99 The data locker ID of unordered point cloud data.

Internal Signals

The following table describes internal signal in the Checkpoints page in the Transform_3D function
block.

Item Type Range Description [Unit]

Rot_Matrix (ARRAY[9]S3
2)

-2147483648 -
2147483647

Reports elements of the rotation matrix. Element 0 of the array corresponds to the value at
the first column of the first row. Element 1 corresponds to the value at the second column
of the first row. It continues in that fashion. All elements are multiplied by 1e6.

Processing_Time U32 0 - 4294967295 Time taken to process input point cloud data.
[µs]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_3D Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 211

Item Type Range Description [Unit]

Transform_Err U8 0 - 4 Indicates that an error occurred in the block functionality.
0: No Error
1: Unable to create thread
2: Not enough memory available to create thread
3: Thread timeout
4: The requested translation is greater than the maximum range of the sensor

Updated BOOL T/F Indicates that the function block has stored a new point cloud in the data locker.
T: New data is available
F: No new data is available

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_3D Function Block

212 | © Danfoss | June 2025 AQ295075513101en-000109

The Transform_GNSS function block takes coordinate data from one point and transforms it to show
coordinate information from a different point. Usually, this involves coordinate data for a GNSS antenna
recalculated to monitor the machine's origin.

Many machines run autonomously due to sensors calculating where the machine is in the world or in
relation to its surroundings. GNSS antenna sensors measure the antenna's location with satellites,
thereby getting global X and Y coordinates for the antenna. See Global or World Coordinate System on
page 15. Some hardware sensors measure altitude, which is the height of the sensor from sea level. Other
hardware sensors include a compass to measure yaw, which is rotation along the z-axis. All this data
measures the sensor's location, and usually an autonomous machine needs the coordinate data to
measure another section of the machine frame, such as the machine's origin on the back axle.
Transform_GNSS allows this recalculation of the coordinates to happen, essentially transforming the
data from one point to a different point.

Common scenarios include transforming the coordinate data from the GNSS sensor to the machine's
origin, or transforming the data to collect coordinates on the edges of the machine. For example, the
coordinates of the four corners of a machine could be calculated to determine if a section of the machine
crosses a boundary.

When recalculating the coordinates from the GNSS antenna to the machine's origin, determine the
machine's origin based on the type of machine.

The image above shows the machine's origin (yellow star) in different places based on the type of
machine. The GNSS coordinates move from the antenna (purple circle) to the machine's origin. The
antenna includes a yaw sensor.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 213

Measure from the machine's origin to the GNSS antenna, and put these distances into Offset_X and
Offset_Y parameters in Transform_GNSS. Antennas in front or to the left of the machine's origin have
positive values, and behind or to the right have negative values.

The image above shows three viewpoints of a machine with a dual GNSS and yaw antenna sensor on top.
The sensor gets coordinates for the sensor's origin, and that information is transformed to show the
machine's origin coordinates on the center rear axle. The distances between the sensor's and machine's
origins are entered as offsets in Transform_GNSS parameters.

When mounting either a dual GNSS antenna or a yaw sensor, line up the sensor rotation with the
machine's rotation so that yaw is zero. Get the sensor's yaw from its instruction manual or use the
Yaw_Estimate function block. The GNSS antenna's information goes into the inputs of
Transform_GNSS, which could include roll, pitch, altitude, yaw, X, Y, and standard deviations.

If using an articulated machine, Transform_GNSS calculates the pivot point where two machine sections
connect, and then a second Transform_GNSS calculates from the pivot point to the machine's origin.
Ideally, use zero for the sensor rotation Yaw_Offset in the first block, and use the articulation angle as the
Yaw_Offset in the second block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

214 | © Danfoss | June 2025 AQ295075513101en-000109

The image above shows an articulated machine with a dual GNSS and yaw sensor in the top right corner.
Coordinates move from the sensor to the articulated point, and then from the articulated point to the
back of the machine. Use the articulation angle for a yaw offset in the second block.

If a machine will go on a slope, measure from the ground to the GNSS sensor's origin, entered as
parameter Altitude_Offset. The machine frame also requires pitch and roll data to identify a slope, which
could be gathered from an Inertial Measurement Unit (IMU) sensor. On a slope, Transform_GNSS

automatically adjusts the coordinates to read from the ground rather than the machine's origin. The
Altitude output shows the distance above sea level either from the ground for a slope or the machine's
origin for flat surfaces. However, this feature is turned off if Altitude_Offset is zero.

The image above shows a machine on a slope. The coordinates move from the GNSS sensor (top left blue
rectangle) to the center of the machine, and then to the ground, rather than the machine's origin.

Transform_GNSS does not specifically need hardware sensors. Custom code could determine where the
machine is in relation to its surroundings. In that case, any mention of hardware sensor would mean the
first coordinate point, before the information is transformed to a second coordinate point. Another
Transform_GNSS function block is needed each time coordinate data moves to another location.

Transform_GNSS outputs show the coordinates of the transformed point, which is usually the machine's
origin. Compare the input and output data to check that the coordinates are different from each other.
Additionally:

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 215

• Avoid very low standard deviations, such as less than 1 mm or 1 degree. This prevents numerical
issues and small deviations occurring downstream in the code, especially in Position_Filter.

• Identify the inputs before using Transform_GNSS or Position_Filter in the field.
• Mount all hardware sensors aligned with the machine coordinates to avoid extra calculations.
• Transform_GNSS assumes the GNSS antenna and machine have a rigid body transformation with no

moving parts between the antenna and machine chassis.
• A yaw sensor could be used to get the machine's origin. The Yaw_Offset parameter aligns the yaw

sensor to the machine's frame.
• Dual GNSS antennas are not required. Transform_GNSS assumes that Roll and Pitch inputs are for

the machine frame, and the Yaw input is for the GNSS antenna frame.
• Roll and Pitch inputs must be sensed by the machine frame, and are usually gathered from an Inertial

Measurement Unit (IMU) sensor. Do any required rotations before using these inputs.
• Record the transformed position first if using Transform_GNSS with Path_Follower_Adv or

Path_Recorder, rather than recording the path first.

Application Information

Common function blocks that work with Transform_GNSS are Position_Filter, as well as GNSS function
blocks Origin, Relative_Pos, UTM_Conv, and UTM_Conv_Zone.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

216 | © Danfoss | June 2025 AQ295075513101en-000109

1. Scenario one shows coordinate information from a GNSS sensor transformed to a machine's origin. A
GNSS hardware sensor gets global coordinate information, such as longitude and latitude numbers.
Information passes through the four GNSS function blocks to give the hardware sensor's relative
position, which are smaller numbers. The Yaw_Estimate function block guesses the hardware
sensor's rotation around the z-axis. All this hardware coordinate information goes into
Transform_GNSS, which transforms the coordinate data to monitor the machine's origin. The
machine's relative coordinate information enters Position_Filter to get a more precise location
reading. Then Path_Follower uses the coordinate information for the machine to follow a path.

2. Scenario two includes more hardware sensors that measure yaw and Inertial Measurement Unit
(IMU). These extra sensors help compensate when a machine tilts on a hill. Because the hardware
gives yaw information, the Yaw_Estimate function block is not needed. Transform_GNSS

transforms the relative hardware coordinates to read another section of the machine. The relative
machine coordinates go into Position_Filter to give more precise readings. Then, Path_Recorder

records a path for a machine to follow, and it compensates for the tilted hardware sensor to give
more accurate readings on a different machine.

3. Scenario three uses Transform_GNSS to determine when a section of the machine crosses a
boundary in Geofence_Check. In this case, the coordinate information moves from the GNSS and
yaw sensors to another part of the machine, such as the machine's origin. Boundary information flows
from Boundary_Converter into Geofence_Check. Further code tells the machine how to react after
the machine's origin crosses the boundary.

4. Scenario four uses two Transform_GNSS to determine an articulated machine's coordinates. The first
transformed point occurs at the pivot point angle, and then those coordinates with the angle are
transformed to the machine's origin with the second Transform_GNSS.

5. Scenario five adds more Transform_GNSS after Position_Filter determined the machine's origin.
Two more Transform_GNSS locate two other coordinate points on or around the machine, such as
the front and back of the machine. In parallel, Boundary_Converter gives boundary data to
Geofence_Check, which reads if the two areas of the machine pass over the boundary.

The image above shows two Transform_GNSS used with an articulated machine and where the data
originates.

Additionally, place the Transform_GNSS function block:
• After position data is collected from hardware sensors. Sometimes, the machine's position can be

established by locating itself to nearby items without using GNSS hardware.
• After GNSS function blocks Origin, Relative_Pos, UTM_Conv, and UTM_Conv_Zone.
• Before the Position_Filter function block.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 217

Example

The example shows the Transform_GNSS function block used to move coordinates from a GNSS
antenna to the machine's origin.

The image above shows a top down and side views of a machine with a GNSS antenna sensor on top,
labeled as Hardware. The machine and sensor origins appear as yellow stars.

1. Determine where the machine's origin should be based on the type of machine. Here, it is an
Ackermann machine, so the machine's origin is in the center back axle.

2. Mount the GNSS antenna hardware on the highest place on the machine, as close as possible to the
machine's origin. The antenna should be high enough to have visibility of open sky and not under a
hood.

3. Look at the antenna hardware instructions to determine the antenna's yaw. Ideally, match the
antenna yaw rotation to the machine's yaw at 0 degrees. Optionally, use the Yaw_Estimate function
block to get the machine's offset from the antenna.

4. Make sure the Inertial Measurement Unit (IMU) is aligned to the machine. To do that, rotate it. Put the
machine on a flat surface, where X and Y are 0,0. Anything seen in the IMU is a bias. Put in custom
code to average the values. Then, remove that average from the signal.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

218 | © Danfoss | June 2025 AQ295075513101en-000109

5. Set up the UTM_Conv, Origin, UTM_Conv_Zone, and Relative_Pos function blocks, which establish
the machine's location. Here, the noise from the hardware GNSS antenna sensor goes into
Relative_Pos.

The image above shows a common set-up to establish the machine's location.

6. Connect Relative_Pos to Transform_GNSS. Here, the four beginning blocks are combined in the
GNSS_to_Rel_XY block with the output Rel_XY going into Inputs.

Hemisphere refers to the GNSS hardware, whose coordinate information goes into UTM_Conv and
UTM_Conv_Zone. The noise of the GNSS hardware goes into Relative_Pos, and the hardware
altitude goes into Transform_GNSS. Roll and pitch machine information goes into
Transform_GNSS.

7. Connect the outputs of Transform_GNSS Pos_XY to Position_Filter, as well as Yaw. The machine's
yaw rate goes into Position_Filter.

8. Go into Position_Filter to make Acc_X zero. Here, this code is pulled into another box outside of
Position_Filter.

a) Enter 0 for AccX.

b) Enter 1 for AccX_Std_Dev.

c) Enter F for Updated.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 219

9. Measure from the machine's origin to the hardware antenna's origin. Here, that is the back axle to the
top center of the antenna. Roll and pitch are relative to the machine body and not to the antenna. Fill
out the parameters in Transform_GNSS.

a) From the machine's origin up to the hardware sensor is 400 mm. In the parameters, enter 400 into
Offset_X.

b) From the machine's origin to the hardware sensor is 200 mm to the right. In the parameters, enter
-200 into Offset_Y.

c) From the ground to the hardware sensor is 900 mm. In the parameters, enter 900 into
Offset_Altitude. Altitude comes from the antenna hardware. This shows the sensor above sea
level, so numbers in the output will likely be higher than the sensor to the ground.

d) The rotation of the hardware sensor and the machine were mounted to match each other. In the
parameters, enter 0 in Offset_Yaw.

10. Connect the Position_Filter coordinates to other function blocks. For example, they can go into the
path blocks for the machine to follow a path.

11. Look at the Transform_GNSS input and output numbers side by side to see that they are different
from each other, and check there are no error codes. Visually see the data on their Pre-Made Service

Tool Screens on page 25, or view each signal individually.

12. Plot on a graph in Excel the X and Y positions to see that the machine is going in the correct location
and points are in a smooth line. If the plots seem off or points are not in a good line, that means the
sensors might have issues reading data. This problem happens if Position_Filter was not set up
correctly. If the IMU is not aligned with machine, then the position of the machine is wrong and the
wrong spot will be calculated.

Inputs

The following table describes inputs required for the Transform_GNSS function block. Usually, the input
location and source information is for a hardware sensor, and the output information is for the
transformed, new location on the machine.

Item Type Range Description [Unit]

Pos_XY BUS —— A bus that contains location information, including standard deviation and updated
conditions. This information usually originates from a hardware sensor that measures
GNSS coordinates or the Relative_Pos function block.

X S32 -2147483648-2147
483647

The X position before it transforms to another X position. Usually, this is the hardware
sensor's relative X position.
[mm]

Y S32 -2147483648-2147
483647

The Y position before it transforms to another Y position. Usually, this is the hardware
sensor's relative Y position.
[mm]

X_Std_Dev U32 1-4294967295 The standard deviation of the hardware sensor's location along the x-axis. Smaller
numbers indicate more confidence in the location.
[mm]

Y_Std_Dev U32 1-4294967295 The standard deviation of the hardware sensor's location along the y-axis. Smaller
numbers indicate more confidence in the location.
[mm]

Updated BOOL T/F Indicates whether the hardware sensor's X and Y position data is updated.
T: New data is available.
F: New data is not available.

Altitude BUS —— A bus that contains altitude information, including standard deviation and updated
conditions. This information usually comes from a hardware sensor that measures altitude.

Altitude S32 -2147483648-2147
483647

The altitude of the hardware sensor's location, which is the distance from sea level up to
the hardware sensor.
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

220 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Altitude_Std_Dev U32 1-4294967295 The standard deviation of the hardware sensor location along the z-axis, referring to the
distance above sea level. Smaller numbers indicate more confidence in the location.
[mm]

Updated BOOL T/F Indicates whether the hardware sensor's altitude data is updated.
T: New data is available.
F: New data is not available.

Yaw BUS —— A bus that contains yaw information, including standard deviation and updated
conditions. Yaw refers to the machine's rotation around the z-axis. This information usually
comes from a hardware sensor or Yaw_Estimate function block.

Yaw S32 -72000 - 72000 The angle of the hardware sensor's rotation around the z-axis using the ENU (East-North-
Up) reference frame.
[0.01 degree]

Yaw_Std_Dev U32 1-4294967295 The standard deviation of the hardware sensor's rotation around the z-axis. Smaller
numbers indicate more confidence in the machine's rotation.
[0.01 degree]

Updated BOOL T/F Indicates whether the hardware sensor's yaw data is updated.
T: New data is available.
F: New data is not available.

Rot_RP BUS —— A bus that contains information about a machine's rotation around the x-axis and y-axis,
including updated conditions. This information usually comes from a hardware sensor.

Pitch S16 -18000 - 18000 The angle of the machine frame's rotation around the y-axis. This data usually comes from
an Inertial Measurement Unit (IMU) sensor.
[0.01 degree]

Roll S16 -18000 - 18000 The angle of the machine frame's rotation around the x-axis. This data usually comes from
an Inertial Measurement Unit (IMU) sensor.
[0.01 degree]

Updated BOOL T/F Indicates whether the machine frame's roll and pitch data is updated.
T: New data is available.
F: New data is not available.

Parameters

The following table describes the parameters for the Transform_GNSS function block. Usually, the input
location and source information is for a hardware sensor, and the output information is for the
transformed, new location on the machine.

Item Type Range Description [Unit]

Offset_X S32 -2147483648-2147
483647

The distance from the machine's transformed point along the x-axis to the hardware
sensor which measures GNSS. Hardware sensors in front of the transformed point have
positive values and in back have negative values.
Default: 0
[mm]

Offset_Y S32 -2147483648-2147
483647

The distance from the machine's transformed point along the y-axis to the hardware
sensor which measures GNSS. Hardware sensors to the left of the transformed point have
positive values and to the right have negative values.
Default: 0
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 221

Item Type Range Description [Unit]

Offset_Altitude S32 -2147483648-2147
483647

The distance between the ground along the z-axis to the hardware sensor which measures
altitude. Although altitude reads from sea level, this parameter only requires the distance
from the ground to the hardware sensor.
Default: 0
[mm]

Offset_Yaw S16 -18000 - 18000 The difference between the hardware sensor's yaw angle and the machine's yaw angle.
Yaw refers to rotation around the z-axis.
Default: 0
[0.01 degree]

Outputs

The following table describes outputs for the Transform_GNSS function block. Usually, the input
location and source information is for a hardware sensor, and the output information is for the
transformed, new location on the machine.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x0001: Input value too low.
0x8002: Input value too high.

Output BUS —— A bus that contains information about the machine's position after applying the offsets
and rotation to the input values from the hardware sensor.

Pos_XY BUS —— A bus that contains machine location information adjusted to a new position, including
standard deviation and updated conditions.

X S32 -2147483648-2147
483647

The X position after it transforms to another X position. Usually, this X position is the
machine's origin or another part of the machine frame.
[mm]

Y S32 -2147483648-2147
483647

The Y position after it transforms to another Y position. Usually, this Y position is the
machine's origin or another part of the machine frame.
[mm]

X_Std_Dev U32 1-4294967295 The standard deviation of the machine location along the x-axis. Smaller numbers indicate
more confidence in the machine location.
[mm]

Y_Std_Dev U32 1-4294967295 The standard deviation of the machine location along the y-axis. Smaller numbers indicate
more confidence in the machine location.
[mm]

Updated BOOL T/F Indicates whether the machine's X and Y position data is updated.
T: New data is available.
F: New data is not available.

Altitude BUS —— A bus that contains machine altitude information after transformation, including standard
deviation and updated conditions.

Altitude S32 -2147483648-2147
483647

The altitude of the machine's location, which is the distance from sea level up to the
machine.
[mm]

Altitude_Std_Dev U32 1-4294967295 The standard deviation of the machine location along the z-axis, referring to the machine's
distance above sea level. Smaller numbers indicate more confidence in the machine
location.
[mm]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

222 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Updated BOOL T/F Indicates whether the machine's altitude data is updated.
T: New data is available.
F: New data is not available.

Yaw BUS —— A bus that contains machine yaw information after transformation, including standard
deviation and updated conditions. Yaw refers to the machine's rotation around the z-axis.

Yaw S32 -72000 - 72000 The angle of the machine's rotation around the z-axis using the ENU (East-North-Up)
reference frame.
[0.01 degree]

Yaw_Std_Dev U32 1-4294967295 The standard deviation of the machine's rotation around the z-axis. Smaller numbers
indicate more confidence in the machine's rotation.
[0.01 degree]

Updated BOOL T/F Indicates whether the machine's yaw is updated.
T: New data is available.
F: New data is not available.

Internal Signals

The following table describes what happens internally in the Transform_GNSS function block.

View the internal signals on the Service Tool screen. In PLUS+1® GUIDE, these signals are in the
Checkpoints page in the Internal Signals column.

Item Type Range Description [Unit]

Rot_Matrix ARRAY[9]S32 -2147483648-2147
483647

Includes all elements of the rotation matrix for troubleshooting purposes.

Transform_GNSS Troubleshooting

The following table describes errors that could occur in the Transform_GNSS function block and ways to
fix them. No error codes exist for Transform_GNSS.

Other Errors and Fixes

Error Description How to Fix

There is no information in the outputs. Check the hardware sensors. Information should come through there into
the inputs. All the Updated signals should show that information is
coming in through the sensors. If information is entering correctly, then
check the parameters are valid.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Transform_GNSS Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 223

The Two_Point_Planner function block simplifies the creation of path curves by constraining the
machine to fixed radius curves.

Instead of inputting a full path curve, the Two_Point_Planner function block only requires a starting and
ending position, as well as the desired turning radius. The Two_Point_Planner function block then
calculates the shortest path between these two points by evaluating the six possible turning
combinations. The output of the Two_Point_Planner function block is a complete path between the
two points which is directly compatible with the Path_Follower function block.

The following table describes risks when using the function block.

Risk Mitigation

Obstacle Collision Use this function block with Obstacle Avoidance.

Tire Damage This function block plans the same path for the same
points every time, which is the shortest path between
those points.
Add more waypoints.

Sharp Turns This function block is developed for all machines. Input
the correct turning radius to avoid sharp turns and
provide the appropriate propel speeds for the turns
involved.

Inputs

The following table describes inputs to the Two_Point_Planner function block.

Item Type Range Description [Unit]

Start BUS —— Bus containing the machine's start location and driving direction.

X S32 -2000000000-2000
000000

X coordinate of the starting position.
[mm]

Y S32 -2000000000-2000
000000

Y coordinate of the starting position.
[mm]

Yaw S32 -72000-72000 The driving direction of the machine's bearing at the starting point.
[0.01 degree]

End BUS —— Bus containing the coordinates of the machine's destination and driving direction.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Two_Point_Planner Function Block

224 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

X S32 -2000000000-2000
000000

X coordinate of the machine end position.
[mm]

Y S32 -2000000000-2000
000000

Y coordinate of the machine end position.
[mm]

Yaw S32 -72000-72000 The driving direction of the machine at the end position.
[0.01 degree]

Path_In BUS —— Input bus that contains the path of the machine onto which the estimated path is
appended.

Waypoint_X (ARRAY[X]S3
2)

-2147483648-2147
483647

The X position of the waypoint.
[mm]

Waypoint_Y (ARRAY[X]S3
2)

-2147483648-2147
483647

The Y position of the waypoint.
[mm]

Bearing (ARRAY[X]S3
2)

-72000-72000 Angle at which the machine goes through the waypoint. This uses the ENU convention
and the right-hand rule.
[0.01 degree]

Forward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the forward control.
Smaller radii yield sharper turns.
[mm]

Backward_Radius (ARRAY[X]U3
2)

0-4294967295 Distance from the waypoint to the backward control point.
Smaller radii yield sharper turns.
[mm]

NumOfWaypoints U8 0-50 The number of waypoints to add this loop.

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Parameters

Parameters to the Two_Point_Planner function block are described.

Item Type Range Description [Unit]

Para BUS —— Bus containing configuration parameters for the function block.

Radius U16 1-65535 Sets the turning radius of the machine.
Default: 2000
[mm]

Outputs

The following table describes outputs of the Two_Point_Planner function block.

Item Type Range Description [Unit]

Diag BUS —— This bus provides diagnostic values for troubleshooting. In addition, this bus contains all
inputs, parameters, and output signals.

Status U16 —— The status of the function block.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time. *Non-Standard
0x0000: No fault.
0x0001: Input value too low.
0x0002: Input value too high.
0x0008: NumOfWaypoints_Out overflows.

Path_Out BUS —— A path with the shortest curve appended.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Two_Point_Planner Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 225

Item Type Range Description [Unit]

Waypoint_X (ARRAY[X]S3
2)

-2147483648-2147
483647

X position of the waypoint.
[mm]

Waypoint_Y (ARRAY[X]S3
2)

-2147483648-2147
483647

Y position of the waypoint.
[mm]

Bearing (ARRAY[X]S3
2)

-72000-72000 Angle at which the machine goes through the waypoint.
[0.01 degree]

Forward_Radius (ARRAY[X]S3
2)

0-4294967295 Distance from the waypoint to the forward control.
Smaller radii yield sharper turns.
[mm]

Backward_Radius (ARRAY[X]S3
2)

0-4294967295 Distance from the waypoint to the backward control point.
Smaller radii yield sharper turns.
[mm]

NumOfWaypoints (ARRAY[X]S3
2)

0-50 The desired number of waypoints to add this loop.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Two_Point_Planner Function Block

226 | © Danfoss | June 2025 AQ295075513101en-000109

The UTM_Conv function block converts latitude and longitude data of the machine into UTM
coordinates.

This function block is likely to be used in conjunction with a Relative_Pos function block to achieve
relative Cartesian position estimates from GNSS.

The conversion outputs:
• UtmX
• UtmY
• UTM zone
• UTM band

Use the UTM_Conv function block with the Origin and Relative_Pos function blocks.

Input data types must exactly match the indicated type for a successful compile.

The function block does not support polar (UTM) zones A, B, Y or Z.

Inputs

Inputs to the UTM_Conv function block are described.

Item Type Range Description [Unit]

Latitude S32 -800000000-84000
0000

The latitude value.
[0.0000001 degree]

Longitude S32 -1800000000-1800
000000

The longitude value.
[0.0000001 degree]

Updated BOOL T/F True when there is new data to convert. Outputs are updated.
T: Convert latitude and longitude. Update outputs.
F: Do not convert data. Do not update outputs.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

Outputs

Outputs of the UTM_Conv function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8100: Invalid ECU.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

UTM_Conv Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 227

Item Type Range Description [Unit]

Fault U16 —— Bitwise code where multiple items can be reported at a time.
*Non-standard
0x0000: No fault.
0x0001: Input value too low.
0x0002: Input value too high.
0x0004: Latitude is in the UPS Zone range.

UTM BUS —— Latitude and longitude data converted into Cartesian units based on the Universal
Transverse Mercator projection.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 —— The 32 most significant bits of UtmY as stored in a U64 value.

UtmY_Lower U32 —— The 32 least significant bits of UtmY as stored in a U64 value.

Band U8 0, 67-72, 74-78,
80-88

The band where the UtmX and UtmY values are.
0: (NULL) The latitude value is outside of the conversion limits.

Zone U8 1-60 The zone that the UtmX and UtmY values are in.

Updated BOOL T/F True When new data is available from the conversion.
T: New data is available.
F: New data is not available.

Band ASCII Values

67 C 78 N

68 D 80 P

69 E 81 Q

70 F 82 R

71 G 83 S

72 H 84 T

74 J 85 U

75 K 86 V

76 L 87 W

77 M 88 X

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

UTM_Conv Function Block

228 | © Danfoss | June 2025 AQ295075513101en-000109

The UTM_Conv_Zone function block receives the machine's latitude and longitude information and
converts this information into UTM coordinates.

The conversion outputs:
• UtmX
• UtmY
• UTM zone
• UTM band

Unlike the UTM_Conv function block, the UTM_Conv_Zone function block provides the ability to
manually input zone information. This is useful if the autonomous machine is operating close to the
boundary of two different zones.

It is also used with the Origin and Relative_Pos function block to ensure that the machine position is
calculated in the same UTM Zone as the origin.

The function block does not support polar (UTM) zones A, B, Y or Z.

Inputs

Inputs to the UTM_Conv_Zone function block are described.

Item Type Range Description [Unit]

Zone U8 1-60 The UTM zone into which the latitude and longitude values are converted.
When a Zone value is provided for an Input, the value is the Input zone.

Latitude S32 -800000000-84000
0000

The latitude value.
[0.0000001 degree]

Longitude S32 -1800000000-1800
000000

The longitude value.
[0.0000001 degree]

Updated BOOL T/F True when there is new data to convert. Outputs are updated.
T: Convert latitude and longitude. Update outputs.
F: Do not convert data. Do not update outputs.

Chkpt BOOL T/F Enables advanced checkpoints with namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

UTM_Conv_Zone Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 229

Outputs

Outputs of the UTM_Conv_Zone function block are described.

Item Type Range Description [Unit]

Diag BUS —— Provides diagnostic values for troubleshooting.

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x0001: Input value too low.
0x0002: Input value too high.
0x0004: Latitude is in the UPS Zone range.
0x0008: Out of conversion range.

UTM BUS —— The output bus contains the results of the conversion.

UtmX U32 0-10⁹ The UTM Easting (X) value of the origin.
[mm]

UtmY U32
This uses two
U32 types,
equivalent to
a U64.

0-10¹⁰ The UTM Northing (Y) value of the origin.
[mm]

UtmY_Upper U32 0-10¹⁰
This is the range of
the full U64 bit
number.

The 32 most significant bits of UtmY as stored in a U64 value.
[mm]

UtmY_Lower U32 0-10¹⁰
This is the range of
the full U64 bit
number.

The 32 least significant bits of UtmY as stored in a U64 value.
[mm]

Band U8 0, 67-72, 74-78,
80-88

The latitude band where the UtmX and UtmY values are. Values are represented in ASCII,
not letters.
0: (NULL) The latitude value is outside of the conversion limits.

Zone U8 1-60 The UTM zone that the UtmX and UtmY values are in.
This is also the same zone specified on the input.

Updated BOOL T/F True when new data is available from the conversion.
T: New data is available.
F: New data is not available.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

UTM_Conv_Zone Function Block

230 | © Danfoss | June 2025 AQ295075513101en-000109

The Wall_Detect function block parses a LiDAR scan, fits a line to the scan looking for a continuous
surface, then reports the angle and distance information.

This block requires a LiDAR scanner and the accompanying code. See the Plus+1 Compliant Ouster Block

User Manual for information about the Ouster LiDAR scanner and block.

This can be used to find any generic smooth feature, such as a wall. This function block can limit the
range of the scan to perform a better fit and provide more accurate results.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value for more information about creating unique namespaces.

This function block requires the 'Data_Lockers' block to compile and function correctly. Place the
'Data_Lockers' block, only once, anywhere in the application from the 'Utility' category of the latest
version of Autonomous Control Library.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Wall_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 231

Inputs

Inputs to the Wall_Detect function block are described.

Item Type Range Description

Chkpt BOOL T/F Enables Advanced Checkpoints with Namespace for each Diag signal.
T: Include checkpoints when compiled.
F: Do not include checkpoints when compiled.

O_PtCld S8 -1-99 The data locker ID of an ordered point cloud data.

Parameters

The Wall_Detect function block's operating characteristics are set by para bus input signals.

Item Type Range Description [Unit]

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Start_Angle S16 -18000-18000 This parameter specifies which beam of the LiDAR scan to use to start parsing for an edge.
Default: -18000
[0.01 deg]

Stop_Angle S16 -18000-18000 This parameter specifies which beam of the LiDAR scan to use to stop parsing for an edge.
Default: 18000
[0.01 deg]

Max_Distance U32 0-100000 This parameter determines how far away a data point can be and still be used in the least-
squares fit calculation. This can be used to ensure that the function block is not fitting
features that are too far away.
Default: 10000
[mm]

Ring U16 0-65535 The horizontal ring row of the 3D LiDAR scan. Set to zero for a 2D LiDAR. Zero is the
bottom ring row.
Default: 0

Outputs

Outputs of the Wall_Detect function block are described.

Item Type Range Description [Unit]

Status U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Diag BUS —— This bus provides diagnostic values for troubleshooting and information about the current
status of the function.

Mid_Distance U32 0-4294967295 Distance to the midpoint of the line.
[mm]

Mid_Bearing S16 -18000-18000 [0.01 deg]

Wall_Detect_Err U8 0-4 Indicates errors occurred in the function block operation.
0: No error.
1: Unable to create thread.
2: Not enough memory available to create thread.
3: Thread timeout.
4: Point cloud is unordered.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Wall_Detect Function Block

232 | © Danfoss | June 2025 AQ295075513101en-000109

Item Type Range Description [Unit]

Processing_Time U32 0-4294967295 The time it took to fit a line to the data.
[µs]

Wall BUS —— The Wall bus contains the updated information about the location of the detected wall.

Updated BOOL T/F New information is available from the block.
T: New data is available.
F: New data is not available.

Angle S16 -18000-18000 Angle to the edge in radial coordinates.
[0.01 deg]

Distance U32 0-4294967295 Distance to the edge in radial coordinates.
[mm]

Angle_Std_Dev U32 0-4294967295 Angle to the edge in radial coordinates.
[0.01 deg]

Std_Dev U32 0-4294967295 The standard deviation of the line fit. A lower value indicates a better fit, a higher value
indicates a poor fit.
[mm]

Seq_ID U32 0-4294967295 The unique identifier of the point cloud data frame that the function block most recently
processed. This number updates every loop and should increase every time a new point
cloud scan occurs. The ID could be tracked through different function blocks.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Wall_Detect Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 233

The Yaw_Estimate function block estimates the machine's current yaw value by calculating the angle of
the line between a previous position and the current position of the machine when it travels a certain
distance.

Use this function block when you can not get yaw from an IMU or directly from your GNSS unit.

Input data types must exactly match the indicated type to successfully compile.

The checkpoints page includes advanced checkpoints for each input, output, and internal signal. These
require a unique namespace to prevent multiple checkpoints with the same name. See the topic Change

Namespace Value for more information about creating unique namespaces.

Use the Yaw_Estimate function block to calculate the angle of the machine with respect to the X axis,
traveling in an XY plane. Whenever the machine displaces from a previous position by set distance, yaw is
estimated using a trigonometric function and the machine position is updated.

If the machine drives in reverse and does not have a smart antenna, program logic to flip the yaw
between the Yaw_Estimate function block output and Position_Filter input.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Yaw_Estimate Function Block

234 | © Danfoss | June 2025 AQ295075513101en-000109

Inputs

The table below describes inputs to the Yaw_Estimate function block.

Item Type Range Description

Pos_XY BUS —— The primary input to the block is the Cartesian coordinates of the machine location and
respective standard deviations.

X S32 -2147483648-2147
483647

Cartesian X component of machine location.
[mm]

Y S32 -2147483648-2147
483647

Cartesian Y component of machine location.
[mm]

X_Std_Dev U32 1-4294967295 Standard deviation of X.
[mm]

Y_Std_Dev U32 1-4294967295 Standard deviation of Y.
[mm]

Updated BOOL T/F True if new X and Y values are available for yaw estimate.
T: Use the new X and Y values.
F: Do not update the X and Y value being used.

Chkpt BOOL T/F TRUE when there is new X and Y values to be used for the Yaw calculation.
T: Use the new X and Y values.
F: Do not update the X and Y values being used.

Parameters

Parameter to the Yaw_Estimate function block are described.

Item Type Range Description

Para BUS —— Adjust configuration values here, or replace them with signals routed from the application
through the Para bus.

Distance U16 100-5000 Minimum distance traveled before Yaw is recalculated.
Default: 500
[mm]

Outputs

Outputs of the Yaw_Estimate are described.

Item Type Range Description

Diag BUS —— Provides diagnostic values for troubleshooting and information about the current status
of the machine positions.

Status U16 —— Bitwise code for distance.
0x0000: Status OK.
0x8008: At least one parameter is out of range or in the wrong order.
0x8100: Invalid ECU.

Fault U16 —— Bitwise code where multiple items can be reported at a time.
0x0000: No fault.
0x8001: Input value too low.
0x8002: Input value too high.

Yaw BUS —— The Yaw bus contains estimated information of the machine Yaw.

Yaw S32 -72000-72000 The estimated yaw value.
[0.01 deg]

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Yaw_Estimate Function Block

© Danfoss | June 2025 AQ295075513101en-000109 | 235

Item Type Range Description

Yaw_Std_Dev U32 1-4294967295 Standard deviation of the estimated yaw.
[0.01 deg]

Updated BOOL T/F True when there is new data.
T: New data is available.
F: No new data was converted.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Yaw_Estimate Function Block

236 | © Danfoss | June 2025 AQ295075513101en-000109

Included below are third party licenses Autonomous Control Library uses.

cJSON License

Copyright (c) 2009-2017 Dave Gamble and cJSON contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

GitHub - DaveGamble/cJSON: Ultralightweight JSON parser in ANSI C

TinyEKF License

Copyright (c) Simon D. Levy

All rights reserved.

MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ""Software""), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

User Manual

PLUS+1® Function Block Library—Autonomous Control Function Blocks

Third Party Licenses

© Danfoss | June 2025 AQ295075513101en-000109 | 237

Danfoss Power Solutions designs and manufactures a complete range of engineered
components and systems. From hydraulics and electrification to fluid conveyance, electronic
controls, and software, our solutions are engineered with an uncompromising focus on
quality, reliability, and safety.

Our innovative products makes increased productivity and reduced emissions a possibility,
but it’s our people who turn those possibilities into reality. Leveraging our unsurpassed
application know-how, we partner with customers around the world to solve their greatest
machine challenges. Our aspiration is to help our customers achieve their vision — and to
earn our place as their preferred and trusted partner.

Go to www.danfoss.com or scan the QR code for further product information.

Danfoss
Power Solutions GmbH & Co. OHG
Krokamp 35
D-24539 Neumünster, Germany
Phone: +49 4321 871 0

Danfoss
Power Solutions ApS
Nordborgvej 81
DK-6430 Nordborg, Denmark
Phone: +45 7488 2222

Danfoss
Power Solutions (US) Company
2800 East 13th Street
Ames, IA 50010, USA
Phone: +1 515 239 6000

Danfoss
Power Solutions Trading
(Shanghai) Co., Ltd.
Building #22, No. 1000 Jin Hai Rd
Jin Qiao, Pudong New District
Shanghai, China 201206
Phone: +86 21 2080 6201

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products
already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed.
All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

© Danfoss | June 2025 AQ295075513101en-000109

Products we offer:

• Cylinders

• Electric converters,
machines, and systems

• Electronic controls, HMI,
and IoT

• Hoses and fittings

• Hydraulic power units and
packaged systems

• Hydraulic valves

• Industrial clutches and
brakes

• Motors

• PLUS+1® software

• Pumps

• Steering

• Transmissions

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

	Contents
	Library Introduction
	Acronyms
	Autonomy Glossary
	Licenses Required
	Versions Required
	Documents to use

	Background on Autonomous Machines
	Perception
	Point Clouds

	Positioning
	Global or World Coordinate System
	Local Coordinate System
	Machine Coordinate System
	Sensor Coordinate System
	Yaw, Yaw Rate, and Velocity
	Autonomous Library Blocks

	Navigation

	Application Recommendations
	Hardware and System Compatibility
	Software Libraries
	Autonomy Software System Template
	Autonomy Function Block Template
	Pre-Made Service Tool Screens
	Modify JSON and Update MD5
	Getting Files from XM100
	Restart or Resume Recording After ECU Power Loss

	How ACL Blocks Work Together
	Common Software Set-Up
	Save Processing Time
	Using Namespaces
	Change Namespace Value
	Delete the Old Function Block C Code
	Troubleshooting Common Errors

	Ackermann_Yaw_Rate Function Block
	Inputs
	Outputs

	Angle_To_Curv Function Block
	Inputs
	Parameters
	Outputs

	Boundary_Converter Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Boundary_Converter Troubleshooting

	Boundary_Extract Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Boundary_Extract Troubleshooting

	Boundary_Loader Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Boundary_Loader Troubleshooting

	Boundary_Recorder Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Boundary_Recorder Troubleshooting

	Curv_To_Angle Function Block
	Inputs
	Parameters
	Outputs

	Data_Lockers Helper Block
	Example

	Edge_Detect Function Block
	Inputs
	Parameters
	Outputs

	Extract_Ring Function Block
	Inputs
	Parameters
	Outputs

	Geofence_Check Function Block
	Application Information
	Example
	Inputs
	Outputs
	Internal Signals
	Geofence_Check Troubleshooting

	LiDAR_Filter Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	LiDAR_Filter Troubleshooting

	LiDAR_Mask Function Block
	Inputs
	Parameters
	Outputs
	Internal Signals

	Line_Follower Function Block
	Example
	Inputs
	Outputs

	Line_Yaw_Estimate Function Block
	Example
	Inputs
	Outputs

	Obstacle_Avoidance Function Block
	Inputs
	Parameters
	Outputs

	Obstacle_Detect Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Obstacle_Detect Troubleshooting

	Obstacle_Detect_Area Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Obstacle_Detect_Area Troubleshooting

	Origin Function Block
	Inputs
	Parameters
	Outputs

	Path_Converter Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Path_Converter Troubleshooting

	Path_Extract Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Path_Extract Troubleshooting

	Path_Follower Function Block
	Application Information
	Inputs
	Parameters
	Outputs

	Path_Follower_Adv Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Path_Follwer_Adv Troubleshooting

	Path_Loader Function Block
	Application Information
	Example - One Path
	Example - Multiple Paths
	Inputs
	Parameters
	Outputs
	Internal Signals
	Path_Loader Troubleshooting
	JSON File Path Errors

	Path_Recorder Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Path_Recorder Troubleshooting

	Planar_Surface_Segmentation Function Block
	Application Information
	Configure the LiDAR
	Configure the Region of Interest
	Find a Plane
	Configure the Inlier Point Cloud

	Example
	Check Internal Signals
	Reduce Processing Time

	Inputs
	Parameters
	Outputs
	Planar_Surface_Segmentation Troubleshooting

	Position_Filter Function Block
	Inputs
	Outputs

	Post_Detect Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Post_Detect Troubleshooting

	Projected_Path Function Block
	Inputs
	Parameters
	Outputs

	Projected_Path_Area Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Projected_Path_Area Troubleshooting

	Reflector_Detect Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Reflector_Detect Troubleshooting

	Relative_Pos Function Block
	Inputs
	Outputs

	Transform_3D Function Block
	Inputs
	Parameters
	Outputs
	Internal Signals

	Transform_GNSS Function Block
	Application Information
	Example
	Inputs
	Parameters
	Outputs
	Internal Signals
	Transform_GNSS Troubleshooting

	Two_Point_Planner Function Block
	Inputs
	Parameters
	Outputs

	UTM_Conv Function Block
	Inputs
	Outputs

	UTM_Conv_Zone Function Block
	Inputs
	Outputs

	Wall_Detect Function Block
	Inputs
	Parameters
	Outputs

	Yaw_Estimate Function Block
	Inputs
	Parameters
	Outputs

	Third Party Licenses
	cJSON License
	TinyEKF License

