

A guide to designing Transcritical Refrigeration System with Carbon Dioxide (CO₂) Optimize your CO₂ light commercial application. Partner with the experts.

www.danfoss.com

Article

Transcritical Refrigeration Systems with Carbon Dioxide (CO₂)

Contents

Introduction	•••	•	•••	•		•	•	•	•		•	•	•	•
Carbon dioxid	de	-	S	y	st	e	n	n	k	20	3	si	c	S

Properties of carbon dioxide
Transcritical cycle process
Effect of gas cooler pressure on
System design
System components
Expansion device
Gas cooler
Filter drier
Piping
Safety components
System handling

Refrigerant grades	•
Evacuation	•
Charging	•
Material compatibility	•
Water in CO ₂ systems	•

Safety and design
Safety
Safety standards

References.....

Introduction

The purpose of this guide is to provide the background for understanding how to design and operate a small-capacity (<10 kW) transcritical carbon dioxide (CO₂) system.

eration Systems with Carbon Dioxide (CO₂)

Pa	ige
	3
-c	Л
	- 4
system performance	5
system performance	,
	11
	11
	11
	12
	12
	12
	12
	12
	12
	13
	13
	13
	1/
	14
	14
	1-1
	14

Article

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

Carbon dioxide - System basics

Properties of carbon dioxide

Carbon dioxide (CO₂) is a natural substance that plays an important role in many natural and industrial processes. In nature, carbon dioxide plays a role in photosynthesis in plants and is one of the most important contributors to the global warming effect. In industry, carbon dioxide is used as dry ice for transport cooling, to generate the sparkling effect in some beverages, and as a protection.

It is odourless, non-flammable, and non-toxic, but if the concentration of carbon dioxide rises

Figure 1: Phase diagram for R-744

Figure 1 shows a phase diagram of R744. The three well-known phases: solid, liquid and vapour are shown as coloured areas. A phase change occurs when a process crosses a boundary between areas - like evaporation or condensation for a process crossing the boundary between liquid and vapour phases. At the boundaries, the two phases exist in equilibrium, and properties, such as temperature and pressure, become dependent. The boundary line between liquid and vapour are often referred to as the vapour pressure curve.

Two important state points are marked in the figure: the triple point and the critical point. The triple point represents the condition where all three phases can co-exist in equilibrium. At temperatures below the triple point temperature, liquid can not exist - in other words the triple point temperature sets the lower temperature limit for any heat transfer process based on evaporation or condensation. At the other end of the vapour pressure curve, the critical point

marks the upper limit for heat transfer processes based on evaporation or condensation.

above the natural level in atmospheric air, it will

cause the human breathing rate to increase. It

is heavier than air, so if large quantities escape

typically be found close to the floor.

which is R744.

in a closed room the highest concentrations will

When carbon dioxide is used as a refrigerant it

is often referred to by its refrigerant number -

At temperatures and pressures higher than those at the critical point, no clear distinction can be drawn between what is called liquid and what is called vapour. Thus there is a region extending indefinitely upward from, and indefinitely to the right of, the critical point -and this region is called the fluid region. The fluid region is bounded by dashed lines that do not represent phase changes, but which conform to arbitrary definitions of what is considered a liquid and what is considered vapour [1]. A condition in the fluid region is referred to as a supercritical condition - or very often also as a gas condition.

All substances have a triple point and a critical point - but for most of the substances used as refrigerants, the triple point and critical point are found for conditions that lie outside the region where they are normally used.

Article

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

The term "critical point" has been the cause of misunderstandings as the word "critical" today often is used in the sense of "dangerous" or "serious". Its use to describe a specific state point of a substance can therefore incorrectly associate the use of this substance (e.g. as refrigerant) at

Refrigerant	Critical pressure [bar]	Critical temperature [°C]
R22	49.9	96.1
R134a	40.6	101.1
R404A	37.3	72.0
R410A	49.0	71.4
R600a (Isobutane)	36.4	134.7
R717 (Ammonia)	113.3	132.3
R744 (Carbon dioxide)	73.8	31.0
Table 1. Critical properties of selected	refrigerants	

Table 1 compares the critical pressure and temperature of a number of refrigerants. Typically, refrigerants have critical temperatures above 90°C but some of the refrigerants often used today (e.g. R404A, R410A and R744) have critical temperatures below that.

For R134a the critical temperature is found to be 101.1°C. This means that for R134a heat rejection processes by condensation can be established at temperatures up to 101.1°C. This temperature is higher than necessary for rejecting heat to the atmosphere for almost all refrigeration applications.

For R744 the critical temperature is only 31.0°C. This means that for R744 heat rejection process by condensation can only be established at temperatures up to 31°C. This temperature is

Transcritical cycle process

Specific enthalpy

Figure 2: Subcritical and transcritical refrigeration cycle processes

Pressure (logarithmic scale)

Figure 2 shows two refrigeration cycle processes: one where the pressure in all parts of the process is kept below the critical pressure and one where the pressure during the heat rejection process is kept above the critical pressure.

Since the pressure in all parts of the first cycle process is below the critical pressure, such

conditions close to this state point with specific danger. Instead, the term "critical" should be interpreted as "difficult" - describing e.g. practical problems related to distinguishing between liquid and vapour at conditions close to - or at this state point.

much lower than necessary for rejecting heat to the atmosphere for many refrigeration applications. Considering the temperature difference needed in the heat exchanger, a practical upper limit for a heat rejection process based on condensation is reached at temperatures 5 to 10 K below the critical temperature.

For many refrigeration applications, the ambient temperature will exceed a level of 25°C, making it practically impossible to reject heat by condensing carbon dioxide. However, this doesn't mean that carbon dioxide cannot be used as a refrigerant in these applications. Carbon dioxide can indeed be used as a refrigerant for these applications - but the heat rejection process from these applications must be based on a different process than condensation.

a process is referred to as a subcritical cycle process. The subcritical cycle process is the wellknown traditional refrigeration cycle process. When parts of the cycle process take place at pressures above the critical point and other parts below the critical pressure the cycle process is referred to as transcritical cycle process.

Transcritical Refrigeration Systems with Carbon Dioxide (CO₂)

Article

Transcritical cycle process (continued)

The terminology used for describing the processes and components are almost the same for the two cycle processes except for the heat rejection parts. In the transcritical cycle process, the heat rejection takes place at pressures and temperatures above the critical point – that is, in the fluid region. A condition in the fluid region is often referred to as a gas condition. For the transcritical cycle process, the heat rejection is therefore called gas cooling and subsequently the heat exchanger used is called a gas cooler.

Figure 3 shows a more detailed pressureenthalpy diagram with a simple one-stage transcritical cycle process. The critical point is marked in the figure with a yellow dot. Colour (green and dark green) is used to indicate phases and transitions between them. The supercritical fluid region (gas) is coloured light green. System components have been included, and coloured according to the change of state for the refrigerant as it passes through them.

Figure 3: Transcritical cycle process & main system components

The transcritical cycle process begins with a onestage compression from state point 1 to 2. During this process, the temperature rises significantly - and, for carbon dioxide, can reach a level of 130°C.

The heat rejection process from state point 2 to 3 occurs at constant pressure above the critical point. The temperature during this process varies continuously from the inlet temperature (at state point 2) to the outlet temperature (at state point 3).

The expansion process from state point 3 to 4 occurs at constant specific enthalpy. The inlet condition is supercritical (above the critical point) and the outlet is two-phase (mixture of liquid and vapour).

The heat absorption process (evaporation) from state point 4 to 1 occurs at constant pressure, and the evaporation part also at constant temperature. The outlet condition (compressor inlet condition) is slightly superheated.

The flow of heat and work is marked in the figure with arrows. The evaporator heat transfer rate is Q_{e} and the compressor power consumption is W. The heat transfer rate in the gas cooler is Q_{cc} - and ideally the energy balance gives $Q_{gc} = Q_{F} + W$.

Specifying the operating conditions of a transcritical refrigeration cycle is different than for subcritical cycle processes. For subcritical processes, it is normally only necessary to specify evaporating and condensing temperatures - and if more details are needed – also superheat and subcooling.

Article

Figure 4 shows a pressure-enthalpy diagram with a simple transcritical cycle process. Specifying the evaporating process is done the same way as for subcritical processes, using the evaporating temperature and superheat. In figure 4, the isotherm labelled t_c represents the evaporating temperature.

For the transcritical cycle process, there is no condensing process and consequently the terms condensing temperature and subcooling

Effect of gas cooler pressure on system performance

The operation of a transcritical refrigeration system using R744 is, in many respects, different from the operation of a subcritical refrigeration system using a traditional refrigerant such as R134a.

In the subcritical refrigeration cycle process, the heat rejection process involves condensing of the refrigerant. A large part of the condenser volume on the refrigerant side will therefore be occupied by a two-phase mixture of liquid and vapour. For a two-phase mixture in thermal equilibrium, the pressure will be the saturation pressure at the temperature of the mixture.

For a transcritical process, the heat rejection process does not involve condensing but only cooling of a gas in the fluid region. Consequently, the temperature of the refrigerant will change continuously throughout the entire heat rejection process. Because this is not a phase change process, the temperature and pressure become independent. So what then determines the pressure in the gas cooler?

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

Specific enthalpy

Figure 4: Pressure-Enthalpy Diagram for a transcritical refrigeration cycle process

do not apply. Instead, the outlet condition of the gas cooler (state point 3) must be specified directly using temperature and pressure. In figure 4 the isotherm labelled t_{GCOUT} represents the temperature of the refrigerant after the heat rejection. In addition to specifying $t_{GC,OUT}$ the gas cooler pressure p_{GC} must also be specified. The intersection between the isotherm t_{gc out} and the isobar p_{cc} identifies the outlet condition (state point 3).

In a simple system without receiver the answer is: the refrigerant charge. In a system with a fixed restriction expansion device (e.g. capillary tube), the pressure in the gas cooler will depend on how much refrigerant the system is charged with and its distribution between the components. Having concluded that it is the charge of refrigerant that determine the gas cooler pressure, the obvious next question must be: Does the gas cooler pressure have an influence on capacity and energy efficiency of the system?

Figure 5 illustrates how the gas cooler pressure influences the cycle process. In the figure three different cycle processes are represented. They all have the same evaporating temperature, same evaporator outlet/compressor inlet condition and the same gas cooler outlet temperature. The compression process for all three cycle processes is assumed to be reversible and adiabatic (ideal = isentropic efficiency equal to 1).

The main difference between the three cycle processes is the gas cooler pressure.

(continued)

on system performance

Effect of gas cooler pressure

Pressure (logarithmic scale)

Δp_{GC}

 Δp_{GC}

 $\dot{Q}_{E} = \dot{m} \cdot \Delta h_{EVAP}$ $\dot{W} = \dot{m} \cdot \Delta h_{COMF}$

 $COP = \Delta h_{EVAP} / \Delta h_{COM}$

 $COP_{I} = 1.8, \dot{Q}_{F} = 64 \%$ $COP = 2.6, \dot{Q}_{F} = 100 \%$

 $COP_{H} = 2.5, \dot{Q}_{F} = 106 \%$

Figure 5: Influence of gas cooler pressure on cycle process

4, 4

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

GC, OUT

CP

 $\Delta h_{\underline{EVAP}}$

Specific enthalpy

Λh

Figure 5 illustrates the changes in state point locations and cycle performance as the gas cooler pressure is either increased or decreased from a nominal value. The cycle process with the nominal gas cooler pressure is referred to as the nominal cycle process. The state points with index L represent the cycle with a lower pressure, state points with index H represent the cycle with a higher pressure.

The numbers in the figure show the consequences of a change of app. ±5 bars in the gas cooler pressure. The influence on cycle refrigerating capacity can be observed by comparing the changes in specific enthalpy in the evaporator Δh_{EVAP} . For the cycle process with a lower pressure, the refrigerating capacity is only 64% of that of the nominal cycle process. For the cycle process with a higher pressure, the capacity is 106% of that of the nominal cycle process. This shows that the gas cooler pressure has a significant influence on the refrigerating capacity.

The influence of gas cooler pressure on compressor power consumption can be observed by comparing the changes in specific enthalpy in the compressor Δh_{COMP} The pressure change of ± 5 bars causes changes in the compressor power consumption of app. $\pm 10\%$.

Together the changes in refrigerating capacity and compressor power consumption cause changes in the Coefficient of Performance (COP). The figure shows that the gas cooler pressure has a significant influence on the COP. For the nominal cycle process, the COP is 2.6, but for

both the processes with higher and lower gas cooler pressures, the values for COP are lower, indicating that an optimum gas cooler pressure exists.

Figure 6 shows the variations in refrigerating capacity and COP for a system operating with constant evaporating temperature, superheat and gas cooler outlet temperature. The figure is based on simulation using mathematical models of the components. The model of the compressor reflects "true" compressor behaviour - meaning isentropic and volumetric efficiencies vary with the operating conditions.

It can be seen that the optimum condition for refrigerating capacity is found for a higher gas cooler pressure than for the optimum condition for COP. For a system operating at conditions close to the optimum COP, the extra refrigerating capacity that can be obtained by increasing the gas cooler pressure is relatively small - normally only a few percent.

In almost all practical applications the operating conditions (evaporating temperature, superheat and ambient temperature) will vary. Consequently the optimum gas cooler pressure also varies. Depending on the application, and also magnitude and duration of the variations in operating conditions, different types of high pressure control must be used to ensure efficient and economical operation.

System design

transcritical system. The system consists of a compressor, a gas cooler, an evaporator, and an expansion device.

Figure 7: Layout of simple refrigeration system for transcritical operation

Evaporator

The most simple expansion device that can be used is a fixed flow restriction (e.g. an orifice or a capillary tube). In such a system, the high pressure is not controlled and the system will consequently only be operating with the optimum high pressure - and maximum efficiency (or capacity) - at one single operating condition.

Article

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

Use of an internal heat exchanger between the suction line and the gas cooler discharge line can enhance the performance of the system (figure 8). If the expansion device is a capillary tube, the internal heat exchange can be established by soldering the capillary tube, or parts of it, to the suction line.

Figure 6: Effect of gas cooler pressure on refrigerating capacity and COP

Article

Transcritical Refrigeration Systems with Carbon Dioxide (CO.)

System design

(continued)

Figure 8: Layout of a transcritical refrigeration system with internal heat exchanger and fixed flow restriction as expansion device

The layout shown in figure 8 can be used for systems that operate with medium variations in ambient temperature but with requirements for capacity or efficiency at only one fixed rating point.

When the operating conditions change (e.g. ambient temperature, or evaporating temperature during a pull-down of refrigerated cabinet), the distribution of the refrigerant between the components will change thus the gas cooler pressure also changes. For uses requiring high variability in operating conditions and that must satisfy capacity and efficiency requirements under varying operating conditions, and meet capacity and efficiency requirements at varying operating conditions, high pressure control devices must be used. In addition, it may be necessary to install a lowpressure receiver to compensate for the charge variations on the high-pressure side.

For simple systems, it is possible to use the expansion device as the high pressure control device, and omit control of refrigerant flow into the evaporator.

Full control flexibility can be obtained with a system using an electronic expansion valve and an electronic system controller receiving information about one or more temperatures and pressures in the system. The figures show a controller receiving information about gas cooler outlet pressure and temperature, but much more advanced controllers could be envisioned. The complexity of the controller and the number of sensors/transducers can be selected according to the specific purpose of the system.

Article	Transcritical Refrigeration Syst
	The layout shown in figure 12 can be for systems that operate with large v in ambient conditions and with extre requirements for capacity or efficience all operating conditions. Often it is of systems that are to be analysed expe in a laboratory that such control flexi necessary.
	Other system configurations than the shown in this document are possible choice of system configuration depe requirements for performance under
System compon	ents
Expansion device	Depending on the location and type variation in ambient conditions as we variations in load, a specific type of e device can be recommended.
Gas cooler	The gas cooler design has to be adap

oted to the application of CO, as refrigerant. Aside from the high pressures of up to 137 bars, there are two further issues that must be addressed: a) The gas cooler outlet temperature of the CO₂, b) The temperature change of the CO₂ during the cooling.

The gas cooler outlet temperature of the CO₂ has to be as low as possible in order to obtain the highest capacity and the best COP. This effect has been described in section "Effect of gas cooler pressure on system performance'. The complete heat exchange between the gas cooler and the air has to be counter-current flow or cross-counter-current. The last tubes with the refrigerant before leaving the gas cooler should be located where the coldest air is entering.

Unlike condensers where most of the heat exchange takes place at a constant temperature, the temperature of the CO₂ steadily drops while

Broken thermal contact

Figure 12: Layout of a transcritical refrigeration system with internal heat exchanger and an electronically controlled valve as expansion device

ems with Carbon Dioxide (CO₂)

used ariations eme cy at nly for erimentally ibility is

e ones . The nds on the r a given set of design conditions - or maybe even within a given application design envelope.

The design and use of receivers and pressure control devices for transcritical systems are covered by a number of patents. References to a few of these patents can be found later in this document [2], [3], and [4]. It is strongly advised to conduct a thorough patent search and analysis before making a specific transcritical refrigeration or air conditioning system commercially available.

of system, ell as xpansion

A general description of the mechanisms that can be employed for expansion is given in the System Design section of this guide.

the refrigerant flows through the gas cooler. This also means that the part of the gas cooler where the CO₂ enters into the gas cooler has a higher temperature than any other part while the lowest temperature occurs at the exit. With a standard design, heat would flow from the warmer parts to the colder parts of the gas cooler. This would not only lower the ability to reject heat to the ambient but also result in an increased temperature of the CO₂ leaving the gas cooler. To minimize this heat flow, the thermal contact between the gas cooler sections has to be minimized as shown in figure 13.

To get the air-flow as cold as possible to the gas cooler, the compressor should be located in the air flow behind the gas cooler. For optimum efficiency, the temperature of the CO₂ when leaving the gas cooler should not be more than 2-3 K above the temperature of the ambient air before entering the gas cooler.

Figure 13: Principle of gas cooler design to avoid internal heat flow and to minimize the refrigerant exit temperature

Article	Transcritical Pofrigo						
	franscritical kerriger	ration Systems with Ca	arbon Dioxide (CO ₂)		-	Article	Transcritical Refrigeration
Filter drier	In fluorinated refrigeration are commonly used to re- type with a zeolite core. small pores, and acts like molecules are small enous sieve, and being very poli inside the zeolite molecu	on systems, filter driers move water, usually the The zeolite has extremely a molecular sieve. Water ugh to penetrate the lar, they are adsorbed ules. R134a molecules	a way as to "kick out" th the difference in polari function differently in t the efficiency is fairly g Activated alumina is of remove acids produced	the CO ₂ molecule, due to ty. Even though the driers this respect in CO ₂ systems good. ften used in filter driers to d in the reaction between	,	Charging	It is important to start up with Co phase and continue until the pre reached approximately 5 bars. C aware when charging a refrigera until the pressure reaches the tri
	are too large to penetrative replaceable core is removiate. CO ₂ is a non-polar molect process is different. Like the molecules are small enour molecular sieve. However, adsorbed onto the molecular sieve the molecular sieve.	e the sieve. When the ved, the water goes with rule, so the removal water molecules, CO ₂ ugh to penetrate the er, the water molecules cular sieve, act in such	oil and water. Howeve that produce acids will well-maintained CO ₂ sy content is below the m Therefore, Danfoss reco with CO ₂ to maximize v information about filte systems please contact	r, many of the reactions not take place in a ystem, where the water naximum solubility limit. commends 100% MS for use water removal. For more or driers available for CO ₂ t Danfoss.	-	Material compatibility	CO ₂ is compatible with almost al metallic materials, like the fluorin refrigerants. There are no restrict compatibility, when using coppe The compatibility of CO ₂ and pol more complex. Because CO ₂ is a and stable substance, the chemi with polymers is not critical. The with CO ₂ is the physiochemical e
Piping	Due to the high volumet with a smaller diameter t systems of similar capaci Smaller diameters should decrease the refrigerant	ric capacity of CO ₂ tubes than in conventional ty can be used. d be preferred as they charge and withstand	higher pressures. For th compressors, in most c will be sufficient. The m of the tubes must be of	he existing range of TN cases a tube of 6 x 1 mm naximum working pressure bserved (table 2).	2		as permeation, swelling and the cavities and internal fractures. Th associated with the solubility and CO ₂ in the actual material.
					_	Water in CO, systems	In figure 14, the water solubility
	Diameter	Max. allowable working pressure	Diameter	Max. allowable working pressure		2 •	phase of different refrigerants is acceptable level of water in CO ₂ lower than with other common
	[mm]	[bar]	[inch]	[psig]	-		diagram in figure 15 is shows the
	6 x 1	200	1/4	775	-		water in both liquid and vapour
	8 x 1	143	3/8	662	-		CO ₂ as a function of temperature
	10 x 1	111	1/2	613	-		in the liquid phase is much high
	12 x 1	91	5/8	537			Weter calualitation vertices reference
	15 x 1 Table 2: Maximum allowabl	71 le working pressure for standar	3/4 d copper tubes as used in refri	igeration	_		
Safety components	A burst disc may be integ of the compressor opens system exceeds the maxi It is strongly recommend integrate a pressure swit Saginomiya CCB that cut before the burst disc wor refrigerant and make the	grated into the discharge if the pressure of the imum working pressure. led to additionally ch, such as Danfoss s off the compressor uld open to release the e system operational.	It is strongly recommendevice like a burst disce ach section of the refribe separated from the by closing a valve.	nded to install a safety or a pressure relief valve ir rigeration system that can existing safety device, e.g.			Figure 14: Water solubility of various
System handling					-		If the water is allowed to exceed t solubility limit in a CO ₂ system, pr occur, especially if the temperatu this case, the water will freeze, an
Refrigerant grades	To avoid problems cause content in the CO ₂ , it is re the concentration below CO ₂ with maximum 10 pp common used CO ₂ system	ed by too high water ecommended to keep the max. solubility limit. pm water is suitable for ms.					may affect the operation of e.g. co In small hermetic transcritical CC is generally not a major problem
Evacuation	Due to the low acceptab the evacuation process o important.	le water concentration, f the system is very	The same vacuum pum used for all refrigerants oil.	np and procedure can be s if it is charged with ester	-		

Trantoss

tion Systems with Carbon Dioxide (CO₂)

vith CO ₂ in the vapour he pressure has ars. One must be rigerant system that, the triple point, the	CO_2 can only exist as a solid or vapour inside the refrigeration system. Also, the system will exhibit very low temperatures until the pressure is sufficiently raised. For example, at 1 bar, the sublimation temperature will be $-78.4^{\circ}C$.
oost all common fluorinated estrictions in terms of copper or brass.	Danfoss has carried out a number of tests to ensure that components released for use with CO_2 can withstand the impact of CO_2 in all aspects.
nd polymers is much D_2 is a very inert chemical reaction I. The main concern nical effects, such d the generation of	Tests have shown that CO_2 is different, in particular when it is used in transcritical application, where a large amount of CO_2 can dissolve in polymers, has to be taken into consideration.
ity and diffusivity of	Only a few specific types of polymers are suitable for use as sealing materials in transcritical CO ₂ components.

bility in the vapour nts is shown. The n CO₂ systems is much mon refrigerants. The ws the solubility of pour phases of the rature. The solubility higher than in the

efrigerants in vapour phase R134a CO2 . 10 [°C]

arious refrigerants

ceed the maximum em, problems may perature is below 0°C. In ze, and the ice crystals e.g. control valves.

cal CO₂ systems, water oblem. These systems

vapour phase. Below these levels, water remains dissolved in the refrigerant and does not harm the system. Water (H_2O) molecules are dissolved if the concentration is lower than the maximum solubility limit, but if the water concentration is higher than the maximum solubility limit, the H₂O molecules precipitate out of the solution into droplets.

Figure 15: Water solubility of CO,

do not normally operate at very low temperature, and do not have sensitive control equipment.

To avoid unforseen problems with water in CO₂ systems, a molecular sieve filter drier can be used.

Transcritical Refrigeration Systems with Carbon Dioxide (CO₂)

Article

Safety and design

Safety	CO_2 is a non-flammable and non-toxic fluid. However, if the concentration of CO_2 exceeds a certain level, the amount of oxygen in the atmosphere for breathing is reduced. In extreme cases this can be fatal. The CO_2 cannot be noticed as it does not have an odour that can be detected by humans.	All components must be designed for the adequate pressures. For this, all relevant national and international laws, regulations, and standards must be followed. Safety devices such as burst discs and pressure relief valves or pressure cut- outs are recommended to cover unintended operational conditions.
	CO_2 is heavier than air, so highest concentration levels will be found close to the bottom. Especially for systems installed below ground level, there is a risk of a high CO_2 concentration in the event of a leakage. The installation of a CO_2 sensor with an alarm is recommended.	After assembling the system, it is necessary to conduct a pressure test to ensure that all soldered connections are tight. The use of a pressure switch will avoid exceeding the pressure limit, which may lead to an accident. In the discharge muffler, a burst disc that opens if the pressure exceeds 130 bars +/- 5% has
	The second safety issue with CO ₂ involves the higher pressures by comparison with the traditional refrigerants. In the transcritical cycle, the discharge pressure will be between 80 and 120 bars. The pressure at the low-pressure side depends on the evaporation temperature but during off-conditions, the standstill pressure can be significantly higher.	allowable pressure (PS). The test pressure must be 1.43 x PS.
Safety standards	When this paper was prepared, no international standard had been established explicitly covering hermetic or semi-hermetic type motor compressors for CO ₂ or appliances for household and similar applications with a CO ₂ transcritical cycle.	Danfoss has tested its components to its best knowledge. But as safety conditions for the products are not definitive, the user must ensure that the system is safe.
	There are some standards such as EN378 covering also systems with CO_2 as refrigerant. It may be necessary to comply with other national or safety regulations such as PED when setting up, operating, servicing or in another way working with a CO_2 system.	

References

[1] "Theory and ", M.M. Abbott & H.C. van Ness, Schaum's outline series, McGraw-Hill, Second edition, 1989.

- (2) "Control of high-pressure in transcritical vapour compression cycle", EP 0 604 417 B1
 (3) "Method of operating a vapour compression cycle under trans- or supercritical conditions", EP 0 424 472 B2.
- [4] "Refrigerating system with pressure control valve", WO 5890370

Transcritical Refrigeration Systems with Carbon Dioxide (CO₂)

Danfoss

The Danfoss product range for the refrigeration and air conditioning industry

HFC-free cooling fluids are becoming increasingly popular as companies are looking for ways to reduce their carbon footprint. With Danfoss by your side you are perfectly capable of accommodating every customer specification. Our range of refrigeration solutions comprises components specially developed for the handling of CO₂ and hydrocarbons.

We are offering a single source for one of the widest ranges of innovative refrigeration and air conditioning components and systems in the world. And, we back technical solutions with business solutions to help your company reduce costs, streamline processes and achieve your business goals.

Danfoss A/S • www.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.