

PLUS+1™ GUIDE Software

PLUS+1 Compliant H1 EDC/NFPE Control Function Block User Manual

About this Manual

Organization and Headings

To help you quickly find information in this manual, the material is divided into sections, topics, subtopics, and details, with descriptive headings set in red type. Section titles appear at the top of every page in large red type.

In the PDF version of this document, clicking an item <u>underlined in blue italic type</u> jumps you to the referenced page in the document.

Special Text Formatting

Controls and indicators are set in **bold black type**.

Table of Contents

A Table of Contents (TOC) appears on the next page. In the PDF version of this document, the TOC entries are hyperlinked.

Revision History

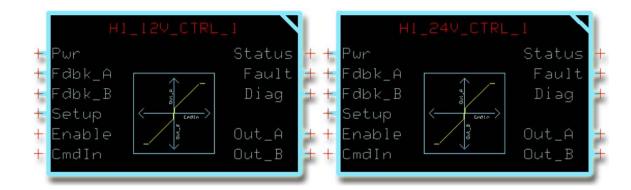
Revision	Date	Comment
Rev CA	October 2011	

©2011 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications.

All trademarks in this material are properties of their respective owners.

PLUS+1, GUIDE, and Sauer-Danfoss are trademarks of the Sauer-Danfoss Group. The PLUS+1 GUIDE, PLUS+1 Compliant, and Sauer-Danfoss logotypes are trademarks of the Sauer-Danfoss Group.



Contents

H1_12V_CTRL and H1_24V_CTRL Function Blocks	4
Overview	4
Inputs	5
Function Block Internal Constants	6
Function Block Parameters	6
Outputs	8
About Function Block Connections	9
Status and Fault Logic	10
Configuration Values	
About Modifying the Config_Data Page	15
About the Relationship between Function Block Input and Output Signals	
MC Controller—Output Configuration	17
How to Configure an MFOut	17
SC Controller—Output Configuration	19
How to Configure an MFOut	19
How to Calibrate the Function Block	
How to Calibrate an Individual Parameter	22
About Manual Calibration with the Service Tool Program	
About the Name Space Feature	24
How to Enter a Name Space Value	

H1_12V_CTRL and H1_24V_CTRL Function Blocks

Overview

The **H1_12V_CTRL** function block interfaces between your application and a Sauer-Danfoss H1 12 VDC EDC (Electric Displacement Control) or a 12 VDC NFPE (Non-Feedback Proportional Electronic Control) that is used with Sauer-Danfoss pumps. This function block's output drives the coils that control flow direction and flow magnitude through the A and B ports of the pump.

The **H1_24V_CTRL** function block interfaces between your application and a Sauer-Danfoss H1 24 VDC EDC (Electric Displacement Control) or a 24 VDC NFPE (Non-Feedback Proportional Electronic Control) that is used with Sauer-Danfoss Pumps. This function block's output drives the coils that control flow direction and flow magnitude through the A and B ports of the pump.

These function blocks only differ in their operating voltages and configuration values.

PLUS+1 I/O modules do not have the fault-checking feedback signals that are needed by these function blocks. An application that uses these function blocks to control an I/O module will fail to compile.

See:

- <u>About Function Block Connections</u> on page <u>9</u> for more about these function blocks' connections and signals.
- <u>About the Name Space Feature</u> on page <u>24</u> if you are using more than one of these function blocks in your application.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

Inputs

H1_12V_CTRL and HI_24V_CTRL Function Block Inputs

Input	Туре	Range	Description
Pwr			Reports controller power supply voltage.
			The function block uses this voltage when it calculates the measured resistance of the control circuit.
Fdbk_A			Reports the status of the MFOut (Multifunction Output) block that receives the function block's Out_A (Output A) bus.
			Each MFOut block in the Outputs page has a corresponding MFOut block in the Inputs page that reports on its status through a Status bus. The Inputs bus on the Application page contains these Status buses.
Fdbk_B			Reports the status of the MFOut (Multifunction Output) block that receives the function block's Out_B (Output B) bus.
			Each MFOut block in the Outputs page has a corresponding MFOut block in the Inputs page that reports on its status through a Status bus. The Inputs bus on the Application page contains these Status buses.
Setup			Allows common configuration values to be applied to multiple function blocks.
			See <u>About Modifying the Config_Data Page</u> on page <u>15</u> for more information.
Enable	BOOL		Enables the OutputValue signals in the Out_A and Out_B buses.
			- T = OutputValue signals follow the CmdIn signal.
			 F = Holds both OutputValue signals at zero.
			- F/T = Clears latched faults if CmdIn is zero.
CmdIn	S16	±10000	Specifies the requested speed and direction.
			+10000 = Requests maximum Out_A speed.
			- 0 = Requests neutral (stop).
			- −10000 = Requests maximum Out_B speed.

H1 12V CTRL and H1 24V CTRL Function Blocks

Function Block Internal Constants

The following table lists constant values that are provided in the function blocks for setting limits. These constants cannot be edited.

H1_12V_CTRL and HI_24V_CTRL Internal Constants

Constant	H1_12V_CTRL HI_24V_CTRL		Description
MaxCrnt	1800 mA 920 mA		The maximum current for displacement or proportional control.
Nominal Ω	3.66 Ω	14.2 Ω	The resistance of the load normally connected to Out_A and Out_B .

Function Block Parameters

Warning

Using the PLUS+1 Service Tool program to download new parameter values to an application can result in unexpected and sudden machine movements.

Unexpected and sudden machine movements can result in personal injury and equipment damage.

Always secure your machine against unexpected and sudden movements before you use the Service Tool program to download new parameter values.

The following table lists function block parameters that are stored in the controller's non-volatile memory.

You can change these values by:

- Execution of the calibration process.
- Direct access to serial EE memory using the PLUS+1 Service Tool.
- Recalling default values.

H1 12V CTRL and HI 24V CTRL Function Block Parameters

Parameter	Туре	Range	Description
A.EE_Thld,	U16	CalThldMin to CalThldMax	Calibrated threshold values for Out_A and Out_B .
B.EE_ThId			
A.EE_EndCrnt	U16	Thld + 1 to MaxCurrent	Calibrated end current values for Out_A and Out_B .
B.EE_EndCrnt			
A.EE_CalFlg,	U8		Calibration flags for Out_A and Out_B .
B.EE_CalFlg			- Bit 1 = 1 (0x0001)—Threshold is not calibrated.
			 Bit 2 = 1 (0x0002)—End current is not calibrated.
			The CalFlg signal in the Diag bus contains both pairs of flags, with the Out_B bits
			shifted to positions 3 and 4.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

These parameters determine the values used as threshold and end current for each direction during normal operation. However, the values actually applied might be different because:

- Thid and EndCrnt are both subject to range limits.
- Thid is modified by the ThidMult value.

The following intermediate values represent the values that are actually applied:

- EndCrntApplied = MIN (EE_EndCrnt, MaxCrnt).
- ThldApplied = MIN((EE_Thld × ThldMult), EndCrntApplied).

This assures that:

- EndCrntApplied never exceeds MaxCrnt.
- ThidApplied never exceeds EndCrntApplied.

Also note that, while the **CalTask** value is set to select a calibration task:

- EndCrntApplied = MaxCrnt.
- ThldApplied = 1.

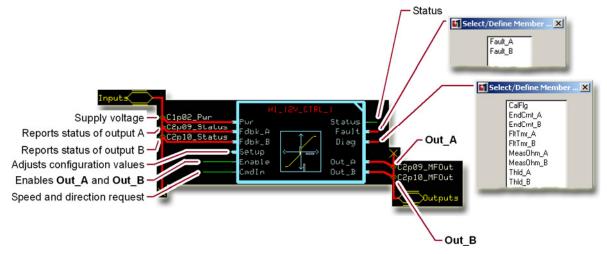
The applied values are available in the **Diag** bus as **Thld_A**, **Thld_B**, **EndCrnt_A**, and **EndCrnt_B**.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

Outputs

H1_12V_CTRL and HI_24V_CTRL Function Block Outputs

Output	Туре	Range	Description
Status	U16		Reports the function block's status.
			This output uses the standard bitwise scheme described in the Basic Function Blocks Library User's Manual.
Fault			Reports the function block's faults.
			This output uses the standard bitwise scheme described in the Basic Function Blocks Library User's Manual.
Fault_A	U16		Reports fault conditions for the A output.
Fault_B	U16		Reports fault conditions for the B output.
Diag			Outputs a bus with these signals:
			- CalFlg (Calibration Flag).
			- EndCrnt_A (End Current A).
			- FltTmr_A (Fault Timer A).
			- MeasOhm (Ohm A).
			- Thld_A (Threshold A).
			- EndCrnt_B (End Current B).
			- FltTmr_B (Fault Timer B).
			- MeasOhm_B (Ohm B).
			- Thid_B (Threshold B).
			The Diag bus also has Config and Define sub-buses with signals that report the configuration and setup
			values used by the function blocks.
			Use these signals for troubleshooting.
CalFlg	U8		The CalFlg signal is a bitmask value that indicates the state of calibration values.
			- Bit 1 = 1 (0x0001)—Threshold A is not calibrated.
			- Bit 2 = 1 (0x0002)—End current A is not calibrated.
			- Bit 3 = 1 (0x0004)—Threshold B is not calibrated.
			- Bit 4 = 1 (0x0008)—End current B is not calibrated.
			Use these flags to manage the calibration process.
EndCrnt_A,	U16		Report the active end current value for the A and B outputs.
EndCrnt_B			During:
			 Normal operation, end current values equal A.EE_EndCrnt and B.EE_EndCrnt.
			 Calibration, the active end current values equal MaxCrnt.
FltTmr_A,	U16		Report the values of the fault delay timers.
FltTmr_B	1		
Thld_A,	U16		Report the active threshold values for the forward and reverse directions.
ThId_B			During:
			- Normal operation, the forward threshold value equals A.EE_Thld x ThldMult and the reverse threshold
			value equals B.EE_Thid x ThidMult .
			 During calibration, threshold values equal 1.



H1_12V_CTRL and H1_24V_CTRL Function Blocks

H1_12V_CTRL and HI_24V_CTRL Function Block Outputs

Output	Туре	Range	Description
MeasOhm_A,	U16	——	Indicate the measured resistance of the control circuits that drive the pump's coils.
MeasOhm_B			
Out_A			Has OutputValue signal that drives the A coil.
Out_B			Has OutputValue signal that drives the B coil.

About Function Block Connections

Connections for both function blocks are the same. These function blocks only differ in operating voltage and configuration values.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

Status and Fault Logic

The following table lists function block status codes. These codes indicate the calibration state of the function block.

Status Logic

Status	Bit*	Reported While		
Block is not calibrated.	1	Any CalFlag bit is set to 1.		
Calibration active.	2	Enable is T and the CalTask = -2, -1, +1, or +2.		
Parameters are corrupt.	3	 (EE_EndCrnt > MaxCrnt) or (EE_Thld × ThldMult) > EndCrntApplied) for either direction A or direction B. The actual tests in the software are: (EndCrntApplied ≠ EE_EndCrnt)—this happens when (EE_EndCrnt > MaxCrnt). It means that EndCrntApplied = MaxCrnt. (ThldApplied = EndCrntApplied)—This happens when ((EE_Thld × ThldMult) ≥ EndCrntApplied). 		
Invalid setup/calibration.	4	Any of the following setup and configuration values are not within their valid ranges: - CalThldMin (for either direction). - CalThldMax (for either direction). - ThldMult. - FltDelay. - CalTask. Also reported while PinStatus reports a configuration error (value =1) for either direction A or direction B.		
Value too low.	7	Threshold calibration is active and the OutputValue < CalThIdMin for the calibration direction.		
Value too high.	8	Threshold calibration is active and the OutputValue > CalThIdMax for the calibration direction.		

^{*}Position of set bit in a 16 bit fault or status code. Bit 1 is the least significant bit. Bit 16 set to 1 identifies a standard Sauer-Danfoss status code or fault code.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

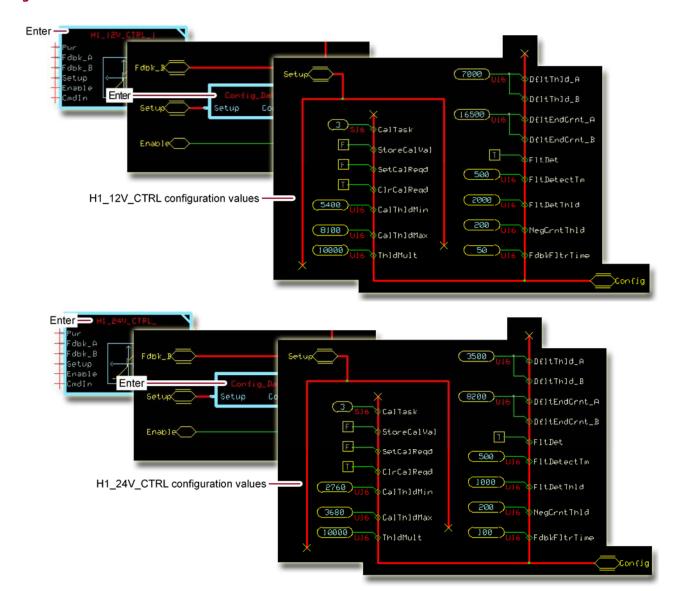
The function block's **Out_A** and **Out_B** buses each contain an **OutputValue** signal that drives the forward and reverse coils on the EDC and MFPE controls. The following table lists function block faults and how they affect the **OutputValue** signals.

Fault Logic

Fault	Cause	Bit*	Response	Delay [†]	Latch [‡]	Correction
Input value too low.	Cmdin < -100000	1		N.	N	Civ. Cov. Ha
Input value too high.	Cmdin > +10000	2		No	No	Fix CmdIn
Open circuit.	Measured $\Omega > (Nominal \Omega \times 3)^{6}$	3				Check for open circuit or high resistance between output pin and ground. See <i>Function Block Internal Constants</i> on page $\underline{6}$ for more about Nominal Ω .
Short circuit.	Measured Ω < (Nominal $\Omega\div 3$)§	4	OutputValue held at 0	Yes	Yes	Check for short circuit or low resistance between output pin and ground. See
Hardware.	Current exceeds continuous or peak rating	6				Correct cause of overload
General.	Current flow between Out_A and Out_B . Possible cause is loss of a common ground connection.	7				Correct open ground connection

^{*}Position of set bit in a 16 bit status or fault code. Bit 1 is the least significant bit. Bit 16 set to 1 identifies a standard Sauer-Danfoss status code or

[†] A delayed fault gets reported if the detected fault condition persists for a specified delay time. A delayed fault cannot be cleared until the fault condition remains undetected for the delay time.


[‡]A latched fault report maintains until the latch is released. A release is attempted each time that **Enable** becomes **T** while **CmdIn** is 0.

 $^{^{\$}}$ The nominal Ω value is an internal constant of each function block. It can be viewed, with other defined constants, in the **Define** sub-bus of the **Diag** bus. The other constants specify the maximum current and the range limits for configuration values.

H1 12V CTRL and H1 24V CTRL Function Blocks

Configuration Values

The default **Config_Data** page contains constant values that set the function block's operating characteristics. Typically, you do not have to change any of these values for the correct operation of the function block.

Optionally, you can:

- Modify the constant values on this page.
- Replace some or all the constant values on this page with signals brought in on the Setup bus, which is connected to the function block's Setup input. For more information, see <u>About Modifying the Config_Data Page</u> on page <u>15</u>.

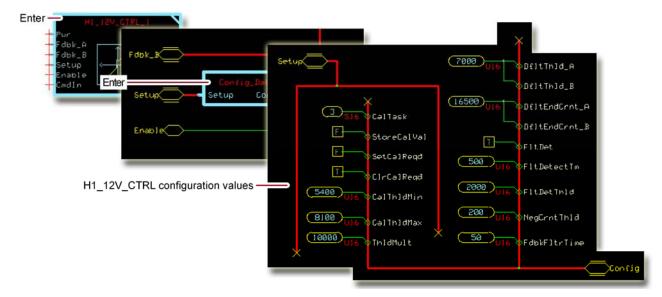
H1_12V_CTRL and H1_24V_CTRL Function Blocks

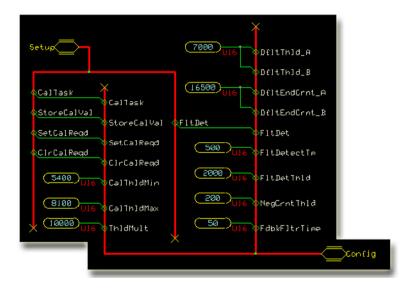
H1_12V_CTRL and HI_24V_CTRL Function Block Configuration Values

Input	Туре	12V Range	24V Range	Description
CalTask	S16	-2 to +3	-2 to +3	 CalTask (Calibration Task) selects a calibration process. - 2 = Calibrate the B end current. - 1 = Calibrate the B threshold. - 0 = Not in the calibration mode.
				 +1 = Calibrate the A threshold. +2 = Calibrate the A end current. +3 = Applies default calibration values for both outputs on a transition to +3. The default value of +3 applies default values each time the controller powers up, and allows normal operation.
StoreCalVal	BOOL		 While calibration is active, a StoreCalVal (Store Calibration Value) F/T transition writes the selected calibration value to memory and sets the CalFig to indicate this value as calibrated. The CalFig in the Diag bus reports the status of each calibration value. T = Not calibrated. F = Calibrated. 	
SetCalReqd	BOOL		—— A F/T transition sets all CalFig bits to 1 to mark all calibration values as uncalibrated.	
CirCalReqd	BOOL		— A F/T transition clears all CalFig bits to 0 to mark all calibration values as calibrated.	
CalThldMin	U16	0–7199	0–3679 Sets the lower limit of the valid range for the threshold parameters. 10000 = 1000 mA.	
CalThldMax	U16	7200–10800	3680–5520 Sets the upper limit for of the valid range for the threshold parameters. 10000 = 1000 mA.	
ThidMult	U16	0–10000	0–10000 The function block multiplies the Out_A and Out_B thresholds by the Thid (Threshold Multiplier) to calculate the applied threshold. Enter a value of less than 10000 to reduce the applied threshold. For examp value of 7500 reduces both the Out_A and Out_B thresholds by 25%. 10000 = 100.00%.	
DfltThld_A	U16	CalThIdMin to CalThIdMax	CalThIdMin to CalThIdMax When the CalTask becomes +3, the Out_A threshold parameter resets to equation the DfltThId_A (Default Threshold A). 10000 = 1000 mA.	
DfltThld_B	U16	CalThIdMin to CalThIdMax	CalThIdMin to CalThIdMax When the CalTask becomes +3, the Out_B threshold parameter resets to eq the DfltThId_B (Default Threshold B). 10000 = 1000 mA.	
DfltEndCrnt_A	U16	0–1800	0–920	When the CalTask becomes +3, the Out_A end current parameter resets to equal the DfltEndCrnt_A (Default End Current A). 10000 = 1000 mA.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

H1_12V_CTRL and HI_24V_CTRL Function Block Configuration Values


Input	Туре	12V Range	24V Range	Description	
DfltEndCrnt_B	U16	0–1800	0–920	When the CalTask becomes +3, the Out_B end current parameter resets to equal the DfltEndCrnt_B (Default End Current B). 10000 = 1000 mA.	
FltDet	BOOL		 The FltDet (Fault Detection) signal enables detection of open and short conditions, based on the measured resistance of the EDC control circuit. T = Enable fault detection. F = Disable fault detection. 		
FltDetectTm	Т	100-2000	Sets the time before the fault detection logic reports or clears fault conditions. This value specifies how long a fault condition must be detected before it is reported. It also specifies how long the fault condition must remain undetected before the report can be cleared. 1000 = 1000 ms.		
FitDetThid	U16		For each direction, the open and short faults are only detected while the OutputValue exceeds the FltDetThld (Fault Detect Threshold). Typically, set this value below the Out_A and Out_B threshold values. If you set the value too: Low, you get nuisance faults. High, you turn off fault detection for some or all of the output range.		
NegCrntThld	U16			Negative feedback current in an uncommanded direction must be greater than the NegCrntThld (Negative Current Threshold) value to set a fault. Typically, this fault results when the A and B outputs drive coils that share a common ground and their connection to the controller ground is lost.	
FdbkFltrTime	U16			Sets the time constant for the exponential filtering applied to the current measurement used to detect a fault caused by negative feedback in an uncommanded direction.	

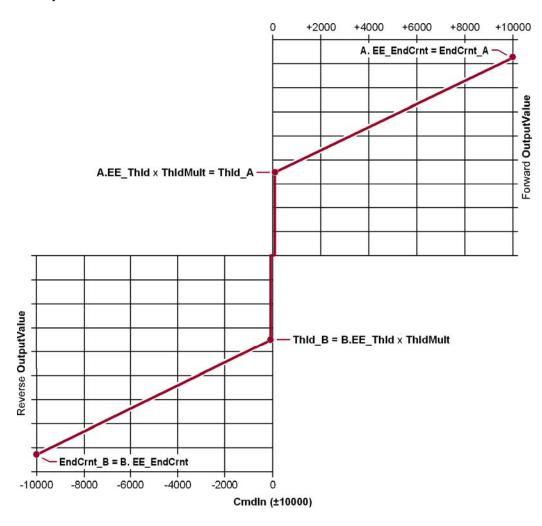

H1 12V CTRL and H1 24V CTRL Function Blocks

About Modifying the Config_Data Page

Modify the **Config_Data** page to control the configuration process with signals routed into the function block from an application.

The preceding figure shows an unmodified **Config_Data** page. This **Config_Data** page has all the values that are needed to configure the function block.

The preceding figure shows the changes made to a **Config_Data** page to allow an application to control the configuration process using signals routed via the **Setup** bus.



H1_12V_CTRL and H1_24V_CTRL Function Blocks

About the Relationship between Function Block Input and Output Signals

The function block's **Out_A** and **Out_B** buses each contain an **OutputValue** signal.

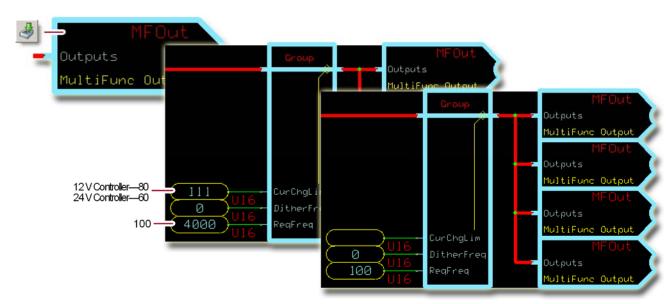
The following figure plots the relationship between the function block's **CmdIn** and **OutputValue**.

- The Thid_A value sets the Out_A OutputValue of the block when it receives a CmdIn of +1.
- The Thid_B value sets the Out_B OutputValue of the block when it receives a CmdIn of -1.
- The EndCrnt_A value sets the Out_A OutputValue of the block when it receives a CmdIn of +10000.
- The EndCrnt_B value sets the Out_B OutputValue of the block when it receives a CmdIn of -10000.

H1 12V CTRL and H1 24V CTRL Function Blocks

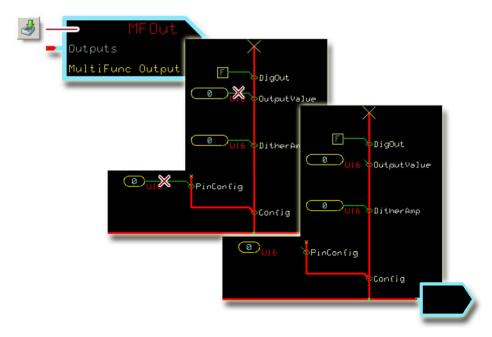
MC Controller—Output Configuration

If you have an SC controller, see <u>SC Controller—Output Configuration</u> on page <u>19</u>.


You route the function block's **Output** bus or buses to an **MFOut**.

How to Configure an MFOut

You must configure the **MFOut** to receive the signals in an **Output** bus.


1. In the GUIDE template, enter the **Outputs** block.

2. In the **Group** that receives the signals in an **Output** bus, make the changes that are shown in the preceding figure.

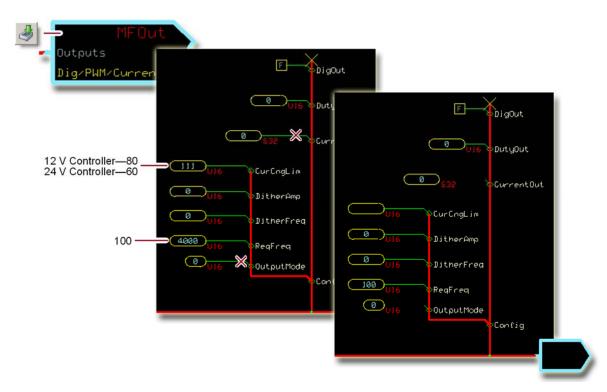
H1_12V_CTRL and H1_24V_CTRL Function Blocks

3. In the individual **MFOut** that receives the signals in an **Output** bus, make the changes that are shown in the preceding figure.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

SC Controller—Output Configuration

If you have an MC controller, see <u>MC Controller—Output Configuration</u> on page <u>17</u>.


You route the function block's **Output** bus or buses to an **MFOut**.

How to Configure an MFOut

You must configure an **MFOut** to receive the signals in an **Output** bus.

1. In the GUIDE template, enter the **Outputs** block.

2. In the **MFOut** that receives the signals in an **Output** bus, make the changes that are shown in the preceding figure.

H1 12V CTRL and H1 24V CTRL Function Blocks

How to Calibrate the Function Block

See <u>About Modifying the Config</u> <u>Data Page</u> on page <u>15</u> for an example of a **Config_Data** page that has been modified to allow an application to control the calibration process.

- 1. Prepare to calibrate.
 - A. Set the **SetCalReq** signal to F.
 - B. Set the **CIrCalReq** signal to F.
 - C. Set the **StoreCalVal** signal to F.
 - D. Toggle the **SetCalReq** signal from F to T.Toggling sets the "not calibrated" bits in the **CalFlag** signal to 1.
- 2. Set the **Enable** signal to T.
- 3. Calibrate the Out_A threshold parameter.
 - A. Set the **CalTask** signal to +1.
 - B. Gradually modify the **CmdIn** signal in a positive (0 to +10000) direction to find the minimum command that causes motion.
 - In the **Status** signal, monitor bit 7—**Value too low** and bit 8—**Value too high** to make sure that the **OutputValue** signal is within the valid threshold range.
 - C. Toggle the **StoreCalVal** signal from F to T to write the **OutputValue** to memory. In the **CalFlag** signal, check that bit 1 clears to 0, to verify that the controller has written the **Out A** threshold parameter to memory.
- 4. Calibrate the Out_B threshold parameter.
 - A. Set the **CalTask** signal to -1.
 - B. Gradually modify the **CmdIn** signal in a negative (0 to –10000) direction to find the minimum command that causes motion.
 - In the **Status** signal, monitor bit 7—**Value too low** and bit 8—**Value too high** to make sure that the **OutputValue** signal is within the valid threshold range.
 - C. Toggle the **StoreCalVal** signal from F to T to write the **OutputValue** to memory.
 - In the **CalFlag** signal, check that bit 3 clears to 0, to verify that the controller has written the **Out_B** threshold parameter to memory.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

- 5. Calibrate the **Out_A** end current parameter.
 - A. Set the **CalTask** signal to +2.
 - B. Gradually modify the **CmdIn** signal in a positive direction to find the command that produces the desired maximum pump flow.
 - C. Toggle the **StoreCalVal** signal from F to T to write the **OutputValue** to memory.

 In the **CalFlag** signal, check that bit 2 clears to 0, to verify that the controller has written the **Out A** end current parameter to memory.
- 6. Calibrate the Out_B end current parameter.
 - A. Set the **CalTask** signal to -2.
 - B. Gradually modify the **CmdIn** signal in a negative direction to find the command that produces the desired maximum pump flow.
 - C. Toggle the **StoreCalVal** signal from F to T to write the **OutputValue** to memory.

 In the **CalFlag** signal, check that bit 4 clears to 0, to verify that the controller has written the **Out_B** end current parameter to memory.
- 7. End the calibration process.
 - A. Set the **CalTask** signal to 0.
 - B. In the **CalFlag** signal, verify that all bits are now 0.
 - C. Verify that no **Status** or **Fault** conditions are reported.
 - D. Set the **ThidMult** signal to the desired value.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

How to Calibrate an Individual Parameter

Partial calibration allows you to calibrate an individual parameter while leaving the values of other parameters unchanged.

- 1. Prepare to calibrate.
 - A. Set the **SetCalReq** signal to F.
 - B. Set the **CirCalReq** signal to F.
 - C. Set the **StoreCalVal** signal to F.
 - D. Toggle the **SetCalReq** signal from F to T.

Toggling sets all the "not calibrated" bits in the **CalFlag** signal to 1.

- 2. Set the **Enable** signal to T.
- 3. Use the **CalTask** signal to select the parameter to be calibrated.
- 4. Calibrate the parameter.
 - A. Toggle the **StoreCalVal** signal from F to T to write the **OutputValue** to memory.
 - B. In the **CalFlag** signal, check that the calibration bit for the selected parameter clears to 0, to verify that the controller has written the parameter to memory.
- 5. End the calibration process.
 - A. Set the **CalTask** signal to 0.
 - B. Toggle the **CIrCalReqd** signal from F to T.
 - C. In the **CalFlag** signal, verify that all bits are now 0.
 - D. Verify that no **Status** or **Fault** conditions are reported.

H1_12V_CTRL and H1_24V_CTRL Function Blocks

About Manual Calibration with the Service Tool Program

You can manually calibrate the function block using the PLUS+1 Service Tool to download calibration parameters.

Warning

Using the PLUS+1 Service Tool program to download new parameter values to an application can result in unexpected and sudden machine movements.

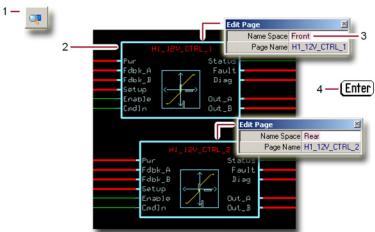
Unexpected and sudden machine movements can result in personal injury and equipment damage.

Always secure your machine against unexpected and sudden movements before you use the Service Tool program to download new parameter values.

When you manually calibrate:

- Make sure that the calibration parameters are valid. If the values are out of range for a
 given direction, the block limits the values of ThldApplied, EndCrntApplied or both
 for that direction. This condition is indicated by the "Parameters are corrupt" Status,
 but it can produce unintended output commands.
- Verify that the **Status** signal indicates normal status conditions.

H1 12V CTRL and H1 24V CTRL Function Blocks


About the Name Space Feature

If you use this function block more than once in an application, you must change each function block's **Name Space** value to avoid compiler errors.

These function blocks allocate memory using memory names ("aliases"). Identical function blocks have identical memory names. Identical memory names will cause a compiler error.

The **Name Space** value adds a unique prefix to each memory name to avoid memory allocation errors. Keep **Name Space** values short to save controller memory.

How to Enter a Name Space Value

- 1. In the PLUS+1 GUIDE menu bar, click the Query/Change button.
- 2. Click the function block's page name to display the **Edit Page** window.
- 3. In the **Edit Page** window, enter a meaningful **Name Space** value.
- 4. Press (Enter ←).
- 5. Repeat these steps to enter unique Name Space values for other identical function blocks.

(This page is intentionally blank.)

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hydraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- Open Circuit Axial Piston Pumps
- Orbital Motors
- PLUS+1™ GUIDE
- Proportional Valves
- Sensors
- Steering
- Transit Mixer Drives

Members of the Sauer-Danfoss Group:

Comatrol

www.comatrol.com

Schwarzmüller-Inverter

www.schwarzmueller-inverter.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Sauer-Danfoss-Daikin

www.sauer-danfoss-daikin.com

Sauer-Danfoss is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Sauer-Danfoss—Your Strongest Partner in Mobile Hydraulics.

Go to www.sauer-danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Sauer-Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Sauer-Danfoss representative nearest you.

Local address: Sauer-Danfoss Inc. 3500 Annapolis Lane North Minneapolis, MN 55447, USA Phone: +1 763 509-2000

Fax: +1 763 559-5769

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA ne: +1 515 239-6000 Fax: +1 515 239-6618 Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 Fax: +45 7488 4400

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany

Phone: +49 4321 871-0 Fax: +49 4321 871 122 Sauer-Danfoss-Daikin LTD Shin-Osaka TERASAKI 3rd Bldg. 6F 1-5-28 Nishimiyahara, Yodogawa-ku Osaka 532-0004, Japan Phone: +81 6 6395 6066

Phone: +81 6 6395 6066 Fax: +81 6 6395 8585