

Operating Guide

HRU – Heat Recovery Unit

controlled with ECL Comfort 310 – P501.12 application

Contents

HRU Unit with ECL Comfort 310 – P501.12	3
Primary function	4
Function description P501.12	5
Operation	5
Control	5
ECL operating mode	5
Regulation	6
Flow temperature	6
Sale of excess heat	6
Energy monitoring	6
Alarms	7
Sensor overview	7
Configuration guide:	8
Heating circuit:	8
REMEMBER	8
Flow meter F1, F2 and F3 configuration	9
Configuration parameters for flow temperature from the HRU unit (S3)	10
Configuration parameters for the return temperature controller	11
Configuration parameters for optimisation	12
Reg. parameter 1 applies to M1 controls	13
Reg. parameter 2 applies to M2 controls	14
Circuit 1, heating circuit	15
Circuit 1, schedule 1	16
Tank temperature	17
Compensation T	18
Reg. recovery	19
Control par., export	20
Boost	21
Circuit 2, schedule 2	22
Circuit 3, tank temperature	23
Circuit 3, schedule 3	24
Connection of ECL 310 to ECL portal	25
Integration with the cooling plant	27
Configuration of heat requirement signals from HRU unit	27
Safety function	27

HRU Unit with ECL Comfort 310 – P501.12

Versions A1- A4

Versions A6- A7

Primary function

Utilisation of excess heat from CO₂ refrigeration plants. The unit prioritises heating of own plant before any sales to e.g. district heating suppliers.

In order to balance different usage patterns (temperatures and heating requirements) on the heating side and the production of excess heat on the cooling side, the unit has been designed as a buffer charging circuit.

This results in very stable and uniform charging, also ensuring a long service life for the CO₂ heat exchanger.

The flow temperature from the HRU unit is controlled by the building requirements (heating, hot water or ventilation), either via signals from other ECLs or via Modbus from an existing SCADA system.

In the event of possible sale of excess heat to the district heating supplier or other buyers, this can be managed in such a way that a constant temperature is supplied to these buyers.

The HRU unit can send a reference signal to the cooling plant indicating how much heat can be accumulated.

A safety function has been embedded to protect against boiling over on the water side.

Function description P501.12

Operation

The system is configured and monitored via the ECL Comfort 310 regulator or a PC/Mac/mobile via the ECL portal.

Link to the ECL portal: ecl.portal.danfoss.com (Internet connection required)

Control

ECL operating mode

The mode of operation of the unit can be selected:

 : AUTO The unit switches between comfort/saving mode via a time program. Or this can be done via a heating request from a slave regulator (ECL Comfort 310)

The mode of operation for this application must be AUTO.

Regulation

Flow temperature

The flow temperature can be controlled using the following principles:

- 1. Fixed flow temperature or flow temperature based on the outdoor temperature from the HRU unit
- 2. Determined by external reference (via Modbus)
- 3. Determined by references from other ECL 310 regulators for domestic hot water, heating or ventilation units via ECL 485 bus communication

The control intelligence ensure that predominantly heat from buffer tanks is used. If, during certain periods, this is not adequate, auxiliary heat can be added from external heating sources such as district heating or boiler systems, etc.

The charging temperature is controlled in accordance with the desired buffer temperature and the cooling plant load, so that maximum energy is transferred from the cooling plant at all times. This ensures that minimal energy is discharged from the gas cooler on the roof.

Cooling circuit

A signal is transmitted to the cooling plant about how much energy can be accumulated so that, during periods without the possibility for accumulation, energy is not transferred from the CO₂ exchangers to the buffer charging system.

Sale of excess heat

In the event of sale or export of excess heat, energy is pumped out via the same supply connection used to buy heat using a frequency-controlled booster pump controlled by the differential pressure and the desired sales flow temperature.

Energy monitoring

If desired, consumption data can be collected via the ECL 310 from heat, water and electricity meters via M-bus connections. The data is transferred to Danfoss' ECL portal.

The energy data is logged on an hourly basis and can also be retrieved for use with third-party energy management systems, in which it may be possible to create an overview of the total energy consumption, corrected for heating degree days, allowing for comparison of the energy consumption of buildings in connection with energy management.

Alarms

Flow failure in charging circuit

An alarm can be configured so that, in the event of a flow failure in the charging circuit (flow meter F3), can stop the circulation pump P3, and at the same time 0V will be transmitted to the cooling plant so that the three-way valve on the CO₂ side leads the gas directly to the gas cooler on the roof.

The alarm is given in accordance with the configured time delay.

Sensor ID	Sensor description
S1	Outdoor temperature
S2	Return temperature, CO ₂ to gas cooler
S3	Flow temperature from HRU to the heating
	circuit
S4	Charging temperature to accumulation tank
S5	Return temperature to district heating
S6	Top temperature in the accumulation tank
S7	Return temperature from the heating circuit
S8	Bottom temperature in the accumulation tank
S9	Flow temperature, sale of excess heat
S10	Return temperature from the accumulation
	tank
S11	CO ₂ temperature from the cooling
	compressor

Sensor overview

Configuration guide:

Heating circuit:

The mixing circuit (M1) operates in three phases: 1: 100% use of recovered heat 2: mixture of recovered heat and auxiliary heat 3: 100% use of auxiliary heat

Note: in the event of 100% use of recovered heat, mixing takes place via the purchase exchanger with a closed M2 valve.

REMEMBER

The return temperature from the heating plant (S7) must always be as low as possible, as only five degrees lower could have a major impact on the utilisation of CO₂ heat recovery. For radiator heating, the return temperature at S7 should ideally be around 30-35 degrees, and for underfloor heating it should be 20-25 degrees.

It is therefore crucial to the utilisation of excess heat that the heating circuit is optimised and correctly configured.

The mixing circuit (M1) is configured as an ordinary mixing circuit. The desired flow temperature from the HRU unit (R3 reference) can be configured as a fixed temperature or a flow temperature based on the outdoor temperature. It can also originate from another ECL 310 or via Modbus from an existing SCADA system.

Remember to configure night setback in the heating system. This means that less energy is used from the accumulation tanks at night. Several refrigerators are now also covered at night and, in such situations, less energy is generated for heat recovery.

Flow meter F1, F2 and F3 configuration

Menu -> Settings -> Flow temperature

- The M-bus from flow meters is connected to the terminals 37 and 38 in the ECL 310.
- All flow meters must be configured in settings. Flow meter F1 <u>must</u> be configured as Energy meter 1, flow meter F2 <u>must</u> be configured as Energy meter 2 and flow meter F3 <u>must</u> be configured as Energy meter 3.

System	
M-bus config:	
Baud	2400
Energy Meter 1	
M-bus address	58
Scan time	10 s
Туре	0
System	
M-bus config:	
►ID	0
Energy Meter 2	
M-bus address	28
	10 -
Scan time	10 S

• Energy meter F3 - shows how much energy is being recovered.

• It is important to ensure that the Baud rate has been set to 2400 for all connected meters.

M-bus Baud 2400

Configuration parameters for flow temperature from the HRU unit (S3)

Menu -> Circuit 1 -> Settings -> Flow temperature

Circuit 1, heating - Flow ten	nperature
Heat curve	Slope 0.1
	Temp. max. 66 °C
150 -	Temp. min. 10 °C
130 -	-30 °C 10 °C
110 -	-15 °C 10 °C
90 -	-5 °C 10 °C
70 -	0 °C 10 °C
50 -	5 °C 10 °C
30 -	15 °C 10 °C
10 	5 0 5 15 25 1 Save
Frost pr. T 10 °C 5 °C 40 °C	10 °C Desired T 50 °C 5 °C 150 °C 5 °C 150 °C
	Save

The weather compensated flow temperature can be configured here

"Frost protection T" is the minimum temperature for S3.

"Desired T" if external override has been created for an available input, the desired fixed flow temperature (R3) from the HRU unit can be configured here.

The minimum and maximum flow temperature (R3) can be configured here.

Configuration parameters for the return temperature controller

Menu -> Circuit 1 -> Settings -> Return temp. Limit

Circuit 1, heating - Return lim	iit		×
150 130 - 110 - 90 - 70 - 50 - 30 -		High limit Y2 Low limit Y1 High T out X1 Low T out X2	60 °C 40 °C 15 °C -15 °C
10	0 20 0.0 Save	Infl min.	0.0 Save
Adapt. time	OFF Ø Off Save	Priority ON OFF	OFF Save
Con. T, ret. T lim. 50 °C 10 °C 110 °C	50 °C Save	DHW, ret. T limit	OFF Off Save

The return temperature controller applies to the temperature at sensor S5.

Here you configure the highest permitted temperature desired at S5.

When this limit is exceeded, the 'Max. amplification' setting can be adjusted to determine the impact this will have on R3.

Configuration parameters for optimisation

Menu -> Circuit 1 -> Settings -> Optimisation

Auto saving -15 °C -30 °C 10 °C	-15 °C	Ramp 0 m 99 m	OFF ✓ Off	Optimizer 9 59	OFF
	Save		Save		Save
Pre-stop ON OFF	ON	Total stop ON OFF	ON	Summer, cut-out	OFF

If an external signal indicating the desired flow temperature (R3) is not received, these settings will apply together with the "Flow temperature" settings.

If a schedule has been configured for comfort/saving mode:

- "Auto-save" will gradually reduce the reduction size and saving mode is cancelled when the configured value is reached.
- "Ramp", change from saving to comfort mode can take place slowly over the configured time.

Reg. parameter 1 applies to M1 controls

Menu -> Circuit 1 -> Settings -> Reg. parameter 1

Circuit 1, heating - Control p	ar. 1				×
Хр 60 К 5 К 250 К	60 K	Tn 40 s 1 s 999 s	40 s	M run 100 s 5 s 250 s	100 s
*	Save	*	Save	*	Save
Nz [2] K 1 K 9 K	2 К	Min. act. time	5	Xp 70 l/h 5 l/h 250 l/h	70 l/h
*	Save	*	Save	*	Save
Tn 70 s 1 s 999 s	70 s	Nz 25 l/h 1 l/h 200 l/h	25 l/h	Min Flow 500 l/h 0 l/h 3000 l/h	500 l/h
*	Save	*	Save	*	Save
Max. T limit	70 °C				
*	Save				

*Parameters apply to the M1 temperature controls (S3).

*Parameters apply to the mixing phase, i.e. when mixing of recovered heat and purchased heat takes place. Flow is associated with flow meter F2. Temperature controls (S3) are controlled by M2.

*Here, the anticipated flow temperature from auxiliary heat (district heating, boiler or other) is configured.

Reg. parameter 2 applies to M2 controls Menu -> Circuit 1 -> Settings -> Reg. parameter 2

Circuit 1, heating - Contro	ol par. 2				×
Хр 60 К 5 К 250 К	60 K	Tn 30 s 1 s 999 s	30 s		
M run 60 s 5 s 250 s	60 s	Nz 2 К 1 К 9 К	Save 2 K	Min. act. time	5
	Save		Save		Save

Here, control parameters (M2) are configured for the desired flow temperature R3.

Circuit 1, heating circuit

Menu -> Circuit 1 -> Settings -> Application

Circuit 1, heating - Applica	ation						×
Demand offset	4 κ Off	Send desired T ON OFF	OFF	P exercise ON OFF	ON	M exercise ON OFF	OFF
P frost T [2] ◦ C -11 ◦ C 20 ◦ C	Save 2 °C	P heat T 20 °C 5 °C 40 °C	Save 20 °C	P post-run 0 m 99 m	Save 3 m	Ext. input OFF	Save OFF T
Ext. mode	Save FROST PR.	Operating form	Save 1	Difference	Save		Save
FROST PR.	Save		Save	ЦК 1 К 60 К	✓ Off Save		

"Slave, difference" is the temperature that is added to the highest temperature requirement that may be received from one or more slave regulators.

"Mode of operation" - Here you select the mode of operation in which the HRU unit will run

- 1: All three phases: recovered / mix / auxiliary heat
- 2: Phases: recovered / auxiliary heat
- 3: 100% use of recovered heat

Circuit 1, schedule 1

Menu -> Circuit 1 -> Settings -> Schedule 1

Circuit 1, he	ating -	Schedu	e 1				×
Мо	Tu	We	Th	Fr	Sa	Su	
Period		Start			End		
1	0	▼ : 0	•	24	: 0	•	
2	24	▼ : 0	•	24	: 0	•	
3	24	▼ : 0	۲	24	: 0	۲	
							1
					- 1	Save	
							/

If an external signal indicating the desired flow temperature (R3) is not received, this schedule will apply to the configured comfort and saving mode temperatures.

Tank temperature.

Menu -> Circuit 2 -> Settings -> Tank temperature

Tank temp. 72.0 °C 10.0 °C 150.0 °C	72.0 °C	Start difference -1 K -50 K -1 K	-1 K
	Save		Save
Stop difference 3 K -50 K 50 K	3 K	P post-run 0 m 0 m 99 m	0 m

Here, you configure the desired temperature in the buffer/charger tanks and when charging should start and stop.

Compensation T.

Menu -> Circuit 2 -> Settings -> Compensation T

Kreds 2 - Compensation T					×
Nedre differens 2 K 1 K 50 K	2 К	Øvre differens 3 K 1 K 50 K	зк	Lav X 50 °C 10 °C 150 °C	50 °C
	Gem		Gem		Gem
Høj X 80 °C 10 °C 150 °C	80 °C	Maks. forstærkn. -1.5 -9.9 9.9	-1.5	Intgr. tid s os 50 s	OFF
	Gem		Gem		Gem

The permitted difference between temperatures S10 and S2 at high and low charging temperature respectively ("High X" and "Low X") can adjust the desired charging temperature (R4) with a desired amplification factor "Max. amplification".

Reg. recovery.

Menu -> Circuit 2 -> Settings -> Reg. recovery

Circuit 2 - Contr. heat recov.					×
Charge difference 3 K 1 K 50 K	3 K Save	Хр [70] К 5 К 250 К	70 K Save	Tn 25 s 1 s 999 s	25 s Save
M run 100 s 5 s 250 s	100 s	Nz 0 K 9 K	0 K Save	Min. act. time 2 2 50	2 Save
V out max. 100 % 0 % 100 %	100 %	V out min.	11 %	Adapt. time	OFF
Min. act. time 0.2 s 0.1 s 5.0 s	0.2 s	PWM period 7.0 s 0.2 s 10.0 s	Save 7.0 s	Reverse out	Save YES
	Save		Save		Save

The desired charging temperature in relation to the tank temperature is configured in "Charging difference".

In "V out. min." you can configure the desired minimum charging flow given by P3.

If the setting "Intgr. Time" is configured as other than "0", the "My running time" and "PWM period" settings can be configured to specify how often the pump will stop and start to achieve less flow.

Control par., export

Menu -> Circuit 2 -> Settings -> Control par., export

Circuit 2 - Control par., expo	ort						×
Desired T 68 °C 10 °C 110 °C	68 °C Save	Start T 72 ℃ 20 ℃ 95 ℃	72 °C Save	Start difference -22 K -50 K 0 K	-22 K	Stop difference -3 K -50 K -1 K	-зк Save
DHW priority ON OFF	ON	Хр <u>45</u> К 5 К 250 К	45 K	Tn 25 s 1 s 999 s	25 s	Nz 0 К 9 К	0 K
V out max. 75 % 0 % 100 %	Save 75 %	V out min.	Save	Adapt. time	Save OFF I Off	PWM period 7.0 s 0.2 s 10.0 s	Save
Reverse out	Save NO T	Хр <u>5.0</u> К 4.0 К 50.0 К	Save 5.0 K	Tn [6] 1 50	Save 6		Save
	Save		Save		Save		

The desired sale/export temperature is configured in "Desired T".

Requirements for the tank top temperature (S6) before export must be configured in "Start T".

Requirements for the tank bottom temperature before export must be configured in "Start difference" as "Start T" + "Start difference".

As shown, **export starts** when both requirements have been met:

S6 > "Start T" > **72** °C

S8 > "Start T" + "Start difference" > 72-22 = **50** °C

As shown, export stops when:

S6 < "Start T"+ "Stop difference" < 72-3 = 69 °C

Or if domestic hot water requirements are received from another ECL 310 if the setting "VV priority" is ON.

Boost.

Off	70 %
0 %	100 %
Save	Save
	-
20 % Dep., export	: ON
ON	
OFF	
	20 % Dep., export • ON • OFF

Boost is an expression of how much energy the HRU unit can buffer via heat recovery. This signal (0-10VDC) the ECL 310 sends to the cooling plant.

During operation, the minimum signal ("V out. min."), here shown as 20%, and the cooling plant will switch the bypass valve next to the CO_2 exchanger. If the buffer charging tanks were to fill up completely, 0% (0 VDC) will be transmitted to the cooling plant.

"V out. min. and max." in the abovementioned 20-70% corresponds to 2-7 VDC.

"Depended on export" ON: This setting can increase the "Boost" signal to the cooler in the event of export/sale of recovered heat. This happens if the tank temperature (S6) is lower than the desired start temperature for export "Start T," or if the current charging temperature (S4) is lower than the desired tank temperature (R6).

"Depended on export" OFF: This setting can increase the "Boost" signal to the cooler. This happens only if the current charging temperature (S4) is lower than the desired tank temperature (R6).

Circuit 2, schedule 2.

Menu -> Circuit 2 -> Settings -> Schedule 2

Мо	Tu	We	Th	Fr	Sa	Su
Period		Start			End	
1	0	▼ : 0	T	13	: 30	•
2	13	▼ : 3	0 🔻	24	. 0	•
3	24	▼ : 0	T	24	: 0	•

Here, you can configure a Schedule for when you want to be able to export excess energy.

Circuit 3, tank temperature.

Menu -> Circuit 3 -> Settings -> Tank temperature

Constant comfort temperature Constant comfort temperature	Comfort DHW T 50.0 °C 10.0 °C 150.0 °C	50.0 °C	Saving DHW T 30.0 °C 10.0 °C 150.0 °C	30.0 °C
Save	Stop difference	Save 0 K		Save
-50 K -1 K	-50 K 50 K			

If a hot water tank is installed between the CO₂ exchanger and the HRU unit, comfort and saving temperatures can be configured here.

Here, you can also configure when the hot water tank will start and stop charging.

Circuit 3, schedule 3.

Menu -> Circuit 3 -> Settings -> Schedule 3

Мо	Tu	We	Th	Fr	Sa	Su
Period		Start			End	
1	0	▼ : 0	T	24	• : 0	•
2	24	▼ : 0	T	24	• : 0	•
3	24	•:0	T	24	• : 0	•

Here, you can configure a schedule for when you want comfort and saving temperatures in the hot water tank.

Connection of ECL 310 to ECL portal.

Menu -> System -> Address type

Connect the network cable with the Internet connection to your ECL Comfort 310

Activate automatic network addressing

System	
Ethernet:	
Address type	DHCP
IP 1	192
IP 2	168
IP 3	1
IP 4	100

Set "ECL Portal" to "ON" and view your serial number and access code under "Server info"

Start your PC and open the link ecl.portal.danfoss.com , create a user account by pressing on the 'new user' link and follow the instructions on screen. You only need to do this the first time you subscribe an ECL Comfort 310

Subscribe the ECL using the serial number and access code.

You are now ready to remote control and monitor your HRU unit.

Integration with the cooling plant.

Note:

It is important to install a 6 bar safety valve as close as possible to the CO₂ exchanger in the charging circuit.

An S4 sensor **must** be installed in the CO₂ exchanger as shown in the image below.

Configuration of heat requirement signals from HRU unit

The galvanically separated 0-10VDC signal from the ECL 310 informs the cooling plant of how much energy the HRU unit can recover.

It is important that this signal is configured in the cooling plant automation so that the CO₂ gas bypasses the CO₂ exchanger and is directed to the gas cooler when no more heat can be recovered in the HRU unit.

The configuration should be set up as follows:

0VDC CO₂ 100% bypasses the heat recovery exchanger 0.5 - 2.5VDC CO₂ is directed 100% through the heat recovery exchanger 2.5 – 10VDC can be used to increase the operating pressure in the cooling plant to make more heat available for recovery

Safety function.

If the flow in the charging circuit during charging is zero for a longer period than configured, the ECL 310 in the HRU unit will send 0VDC to the cooling plant automation, which will switch the by pass valve so that the CO_2 gas is led directly to the gas cooler on the roof.

The cooling plant automation must be equipped with a sensor on the water side of the CO_2 exchanger to protect against boiling.

Danfoss A/S Heating Segment • danfoss.com • +45 7488 2222 • E-Mail: heating@danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and all Danfoss logotypes are trademarks of Danfoss A/S. All rights reserved.