

Data sheet

3-way valve (PN 10) **KOVM** - internal thread

Description

KOVM is 3-way mixing valve which can, among others, be used for the water-side regulation of terminals in the form of "fan-coils" or as induction units.

It can be combined with:

RAVK self-acting thermostatic actuators

Main data:

- DN 15
- k_{vs} 0.63 2.0 m³/h
- PN 10
- Temperature:
 - Circulation water / glycolic water up to 30 %: 2 ... 90 °C
- Connections:
 - Int. thread

Ordering

Example:

3-way valve; DN 15; k_{vs} 1.5; PN 10; t_{max} 90 °C; int. thread.

1× KOVM DN 15 valve Code No: **013U3015**

Option:

1× Comp. fittings Code No: **013G4112**

KOVM valve

	DN	k _{vs} ¹⁾ (m ³ /h)	Connection ISO 7/1	Differential pressure max. (bar)			
Picture				with bypass	without bypass	$\Delta p_c^{2)}$	Code No.
		0.63	R _p ½	1.6	0.8	0.8	013U3014
	15	1.5			0.8	0.8	013U3015
		2.0			0.5	0.5	013U3020

 k_{vs} gives the water flow with fully open valve and differential pressure across the valve $\Delta p_v = 1$ bar

Accessories

Picture	Type designations	Connection	Dimensions	Code No. 3)
	Compression fittings ^{1), 2)}	G ½ A	Ø 12 × 1	013G4112
			Ø 14 × 1	013G4114
			Ø 15 × 1	013G4115
			Ø 16 × 1	013G4116

¹⁾ Compression fitting consist of compression ring and nut

Service kits

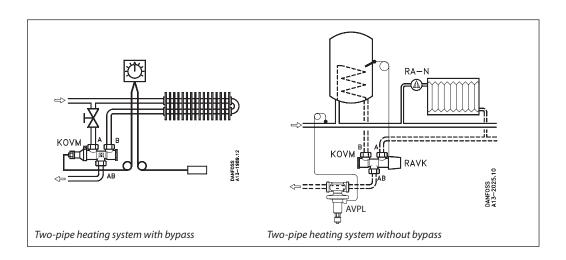
Picture	Type designations	Code No.
	Valve stuffing box	065F0006 ¹⁾

 $^{^{\}scriptscriptstyle 1)}$ The products can only be ordered in multiple packing containing 10 pieces each

© Danfoss | 2018.08 VD.57.C8.02 | 1

 $[\]Delta p_c$ gives the max. differential pressure across the heat exchanger controlled by the valve

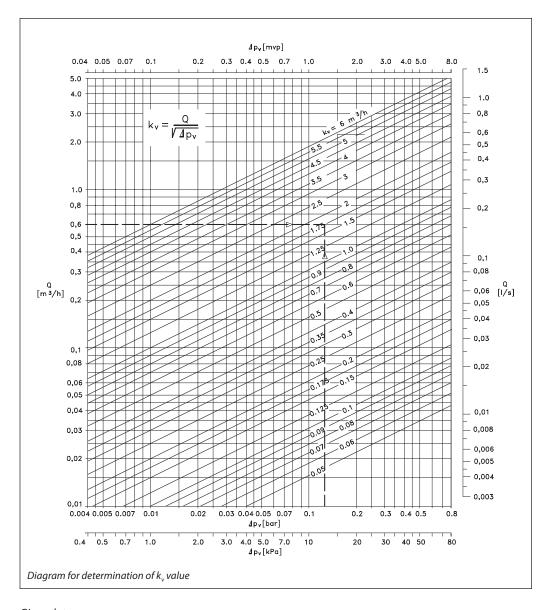
For steel and copper pipe
The products can only be ordered in multiple packing containing 10 pieces each


Technical data

Valve

Nominal diameter DN		15			
k _{vs} value	m³/h	0.63	1.5	2.0	
Stroke	mm	1.5			
Cavitation factor z		≥ 0.5			
Nominal pressure	PN	10			
Medium		Circulation water / glycolic water up to 30 %			
Medium pH		Min. 7, max. 10			
Medium temperature °C		2 90			
Connections		Int. thread			
Materials					
Valve body ¹⁾		Brass			
Pressure pin and spindle		Stainless steel 18/8			
Valve cone		EPDM			
O-rings		EPDM			

 $^{^{\}scriptscriptstyle 1)}$ The valve body material does not permit the valve being used for service hot water.


Application principles

2 | VD.57.C8.02 © Danfoss | 2018.08

<u>Danfoss</u>

Sizing

Given data:

Water flow $Q = 0.6 \text{ m}^3/\text{h}$

Pressure drop

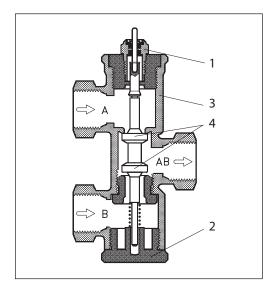
across valve $\Delta p = 12 \text{ kPa (0.12 bar)}$

The k_v value can be calculated from the formula:

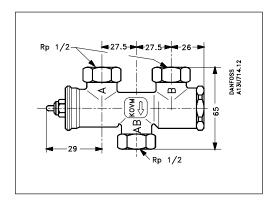
$$k_v = \frac{Q}{\sqrt{\Delta p}} = \frac{0.6}{\sqrt{0.12}} = 1.73 \,\text{m}^3/\text{h}$$

or be read from the diagram on the sloping lines for 1.75 m³/h, where the horizontal dotted line for Q = 0.6 m³/h intersects the vertical dotted line for $\Delta p = 0.12$ bar.

The selection is thus a valve with a k_{vs} value of 2.0 m³/h.



Data sheet


KOVM (PN 10)

Design

- 1. Valve stuffing box
- 2. Bottom screw
- 3. Valve body
- 4. Valve cone

Dimensions

Danfoss A/S

Heating Segment ● heating.danfoss.com ● +45 7488 2222 ● E-Mail: heating@danfoss.com