

Datenblatt

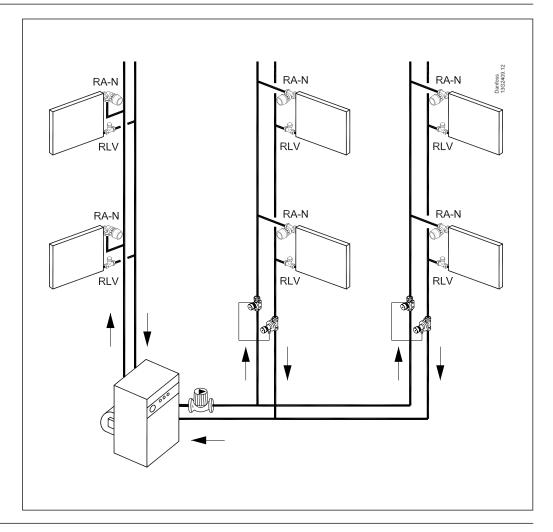
027 KEYMARK zertifiziert und geprüft nach EN215

Voreinstellbare Ventilgehäuse Typ RA-N für Pumpenwarmwasseranlagen

Anwendung

Voreinstellbare Ventilgehäuse RA-N sind zum Einsatz in Zweirohr-Pumpenwarmwasseranlagen geeignet.

RA-N Ventilgehäuse sind in DN 10, 15, 20 und 25 in vernickelter Ausführung, als RA-NCX in DN 15 zusätzlich in verchromter Ausführung lieferbar.


RA-N passen zu Danfoss Fühlerelementen RA 2000, RA PLUS und RAW sowie den Designfühlern RAX aus der X-tra Collection und den thermischen Stellantrieben TWA. RA-NCX in verchromter Ausführung lassen sich ebenfalls mit den Designfühlern RAX kombinieren. Die technischen Daten für alle Ventilgehäuse in Kombination mit Danfoss RA 2000 und RAW Fühlern entsprechen den Anforderungen der Euronorm EN 215.

In Kombination mit Danfoss Fühlerelementen sind RA-N Ventile geeignet für Planungen nach DIN V 4701/10 und AP-Bereich \leq 1K (EnEV).

Die O-Ring Stopfbuchse des Ventils kann unter Anlagendruck ausgewechselt werden.

Zur Vermeidung von Steinbildung und Korrosion sollte die Zusammensetzung des Heizwassers der VDI Richtlinie 2035 entsprechen.

Anlagenprinzip

Bestellung und Daten

Тур	Bestell-Nr.	Ausführung	Ansc	hluss	Ein	stellun	g, k _v -W	erte mi	it RA 20	00 Füh	ler, m³/	h ¹⁾²⁾		Mit Stell- antrieb
			Eintritt	Austritt	X _p	1	2	3	4	5	6	7	N	N(k _{vs})
RA-N 10 ³⁾	013G0031 013G0032 013G0151 013G0231 013G0232	Eck Durchgang UK (Axial) Winkeleck rechts Winkeleck links	R _p 3/8	R 3/8	X _p =1 X _p =2	0,04 0,04	0,09 0,09	0,14 0,16	0,21 0,25	0,23 0,32	0,27 0,38	0,28 0,42	0,34 0,56	0,65 0,65
RA-N 15 3)4)	013G0033 013G0034 013G0153 013G0233 013G0234	Eck Durchgang UK (Axial) Winkeleck rechts Winkeleck links	R _p 1/2	R 1/2	$X_p=1$ $X_p=2$	0,04 0,04	0,09 0,09	0,15 0,16	0,22 0,25	0,28 0,36	0,33 0,43	0,36 0,52	0,43 0,73	0,90 0,90
RA-N 15	013G0115 013G0116 013G0117	Eck, selbstdichtende Nippel Durchgang, selbstdichtende Nippel UK (Axial), selbstdichtende Nippel	R _p 1/2	R 1/2	X _p =1 X _p =2	0,04 0,04	0,09 0,09	0,15 0,16	0,22 0,25	0,28 0,36	0,33 0,43	0,36 0,52	0,43 0,73	0,90 0,90
RA-NCX 15 3)4)	013G4237 013G4238 013G4239 013G4240	Eck Durchgang Winkeleck rechts Winkeleck links	R _p 1/2	R 1/2	$X_p=1$ $X_p=2$	0,04 0,04	0,09 0,09	0,15 0,16	0,22 0,25	0,28 0,36	0,33 0,43	0,36 0,52	0,43 0,73	0,90 0,90
DA N 20	013G0035 013G0036	Eck Durchgang	D 2/4	R 3/4	X _p =1 X _p =2	0,10 0,10	0,16 0,16	0,23 0,24	0,30 0,33	0,36 0,44	0,42 0,56	0,50 0,73	0,59 1,04	1,40 1,40
RA-N 20	013G0155	UK (Axial)	R _p 3/4	N 3/4	$X_p=1$ $X_p=2$	0,17 0,17	0,25 0,25	0,28 0,29	0,34 0,40	0,37 0,52	0,41 0,60	0,45 0,73	0,50 0,80	1,00 1,00
RA-N 25	013G0037 013G0038	Eck Durchgang	R _p 1	R 1	X _p =1 X _p =2	0,10 0,10	0,16 0,16	0,23 0,24	0,30 0,33	0,36 0,44	0,42 0,56	0,50 0,73	0,59 1,04	1,40 1,40

Technische Daten

Max.Betriebsdruck: 10 bar, Max. technischer Differenzdruck 51: 0,6 bar, Prüfdruck 16 bar, Max. Wassertemperatur: 120 °C

Ausführungen mit Außengewinde für den Direktanschluss von Klemmverbindern

Тур	Bestell-Nr.	Ausführung	Anlage	Heizkörper
	013G4201	Eck		
	013G4202	Durchgang		
RA-N 15 ³⁾	013G4203	UK (Axial)	G 3/4	R 1/2
	013G4204	Winkeleck, Rechtsmontage		
	013G4205	Winkeleck, Linksmontage		

Technische Daten und Abmessungen entsprechen RA-N 15 mit Innengewinde

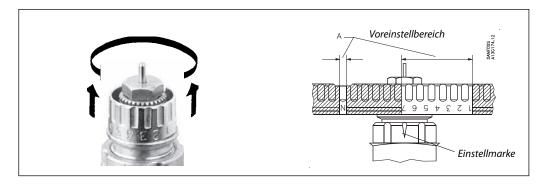
²⁾ Wenn das RAW-Fühlerelement/Ferneinstellelement verwendet wird, verringert sich der k_y-Wert bei gleichbleibendem P-Band.

Тур	k, bei Xp = 1	k _v bei Xp = 2	k _{vs}
RA-N 10	0,24	0,46	0,65
RA-N 15 / RA-NCX 15	0,28	0,54	0,90
RA-N 20-25	0,48	0,72	1,40

 $^{\mbox{\tiny 4)}}$ ½ Gewindeanschluss mit Konusgeometrie nach DIN V 3838.

Ersatzteile und Zubehör

O-Ring-Stopfbuchse für RA-N Ventile zur Auswechselung unter Druck, d.h. im Anlagenbetrieb	013G0290
Blockierring zur Sicherung der Voreinstellung (Packung à 30 Stück)	013G0294


¹¹) Die k_v-Werte geben die Strömungsmenge (V) in m³/h bei einem Druckabfall (Δp) durch das Ventil von 1 bar an. k_v = V : $\sqrt{\Delta p}$. Die k_{vs}-Werte geben V bei vollem Hub d.h. bei voll geöffnetem Ventil an.

³⁾ Der Ventileintritt ist vorbereitet für Klemmverbinder.

⁵⁾ Der max. Differenzdruck gibt die Einsatzgrenzen für eine optimale Regelung an. Um einen geräuschlosen Betrieb zu gewährleisten wird die Auswahl einer Pumpe empfohlen, die nur den zur Umwälzung der notwendigen Wassermenge benötigten Druck zur Verfügung stellt Erfahrungsgemäß genügt in den meisten Anlagen ein Differenzdruck über den Ventilen von 0,05-0,2 bar. Der Differenzdruck kann durch Anwendung eines Danfoss Differenzdruckreglers reduziert werden.

Voreinstellung

Bei voreinstellbaren Danfoss Ventilgehäusen lassen sich die dimensionierten Einstellwerte ohne Werkzeug einfach und exakt einstellen:

- Bauschutzkappe bzw. Fühlerelement demontieren.
- Einstellring anheben.
- Einstellring gemäß der eingravierten Skala gegen den Uhrzeigersinn auf den gewünschten Einstellwert verdrehen.
- Die Einstellmarke zeigt immer exakt in Richtung Heizkörperanschluss.
- Einstellring einrasten lassen.

Die Voreinstellung kann in Stufen von 0,5 zwischen 1 und 7 gewählt werden. Bei Einstellung N ist die Voreinstellung aufgehoben (Spülmöglichkeit). Einstellungen im schraffiert dargestellten Bereich sind zu vermeiden.

Durch die Diebstahlsicherung des Elements wird ein Missbrauch der Voreinstellung verhindert.

Kapazität

Alle Ventile haben einen empfohlenen Dimensionierungsbereich, der zum Teil auch von einem Ventil mit größerer bzw. kleinerer Dimension abgedeckt werden kann.

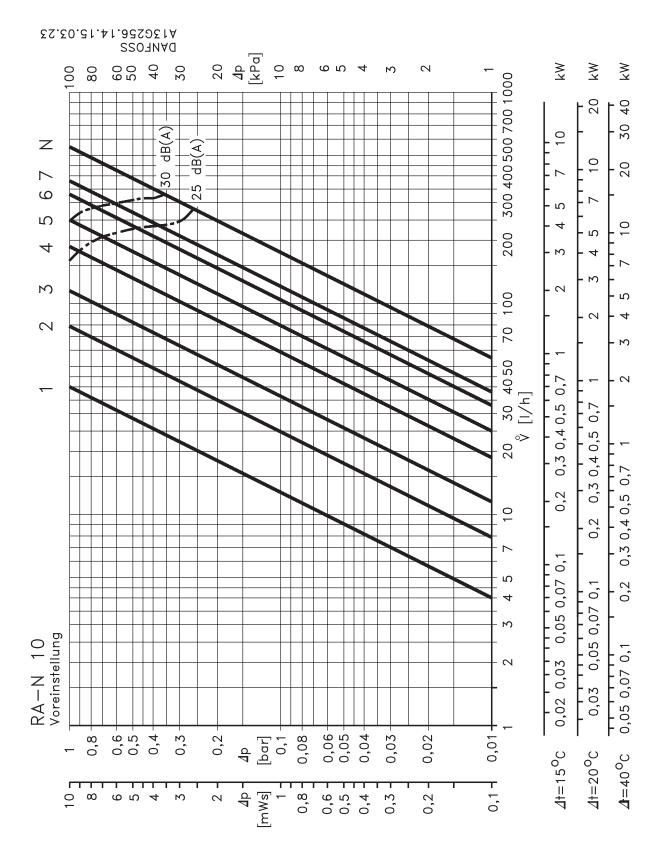
Als P-Band eines Ventils wird die Änderung der Raumtemperatur bezeichnet, die erforderlich ist, um das Ventil von geschlossener Stellung auf die Stellung zu bewegen, die den gewünschten Volumenstrom (gemäß Dimensionierung) zulässt.

Messbedingungen für die Geräuschkurven: Prüfraum: ISO 3743 (L: 5,3 x b:4,9 x H: 2.6 m) Nachhallzeit: 1 Sekunde Grundschallpegel: L_p 13-15 dB(A) Heizkörper: DIN 4722, Typ 500/160 H x B: 550 x 1500 mm Mikrofonanbringung: 1,2 m vom Ventil Geräuschpegel: Angegeben als Schalldruckpegel L_p dB(A).

Wärmebedarf Q = 0,7 kW Abkühlung über Heizkörper ΔT = 20 °C

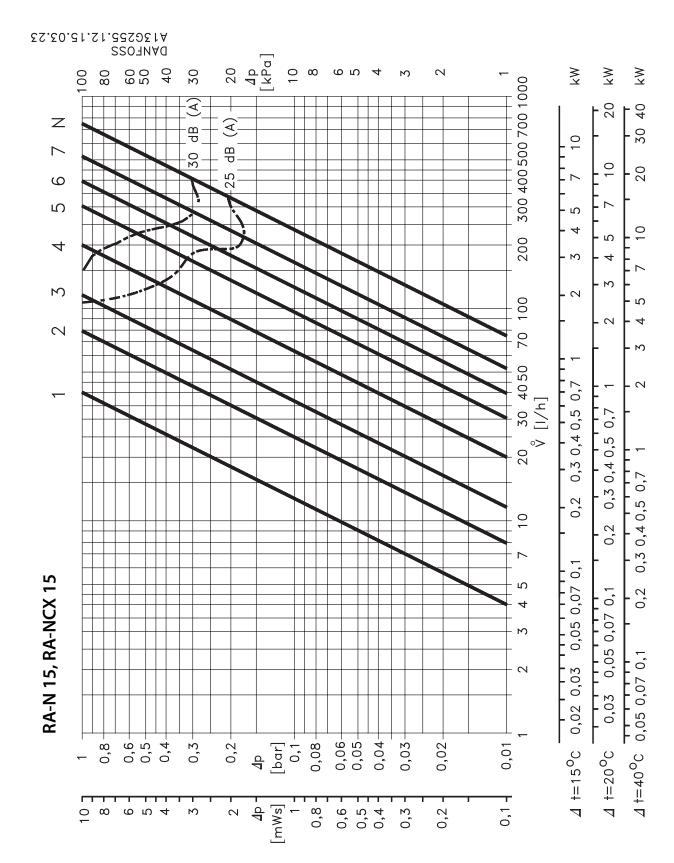
Wassermenge durch Heizkörper:

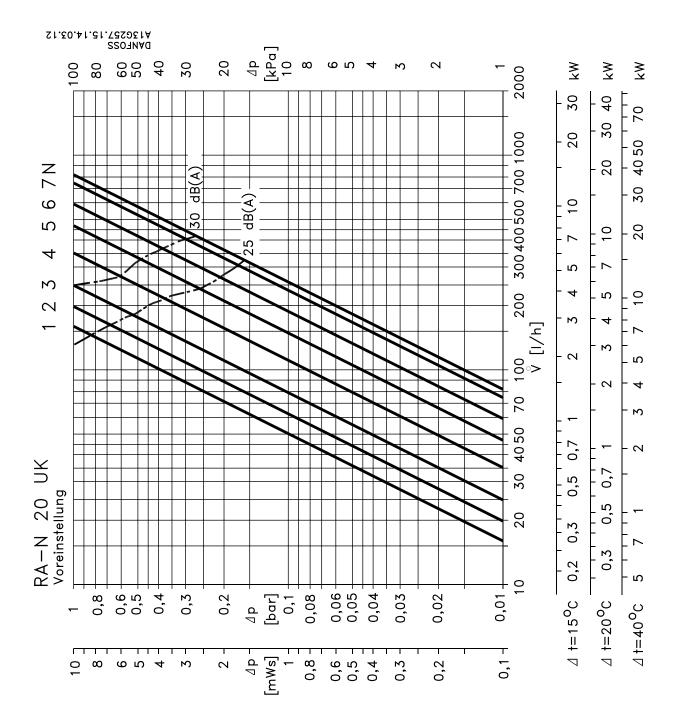
$$\dot{V} = \frac{0.7}{20 \times 1.16} = 0.03 \text{ m}^3/\text{h} = 30 \text{ Liter/h}$$

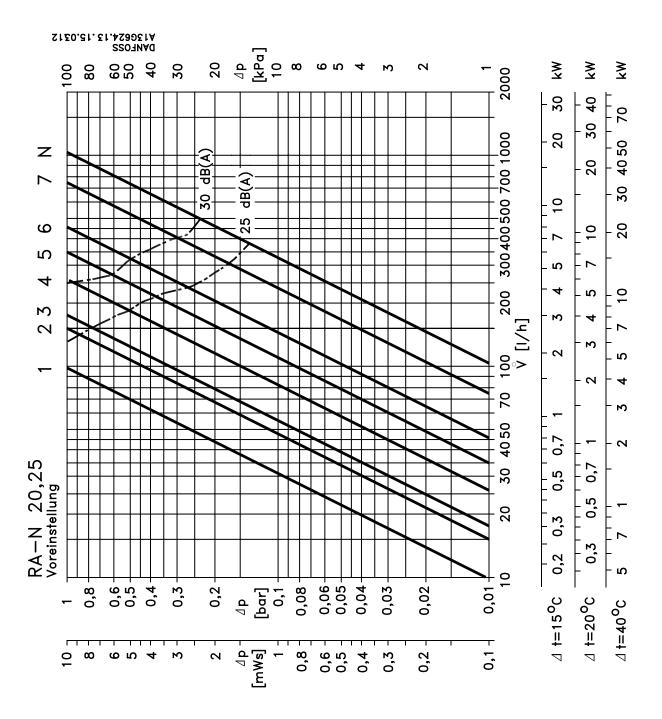

Druckabfall über dem Ventil: $\Delta p = 0,1$ bar = 1 mWs Einstellung am Ventil:

RA-N 10: 2 RA-N 15, RA-NCX 15: 2 RA-N 20/25: 1

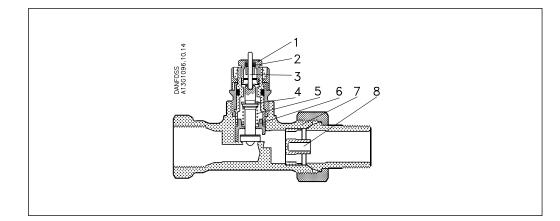
Alternativ ist die Einstellung auch in Tabelle «Bestellung und Daten» direkt ablesbar:


$$k_v = \frac{\dot{V} (m^3/h)}{\sqrt{\Delta p (bar)}}$$


RA-N 10 Auslegungsdiagramm. Kapazität mit RA 2000 Fühler bei einem P-Band zwischen 0,5 K und 2 K.

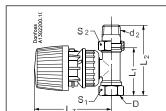

RA-N 15 Auslegungsdiagramm. Kapazität mit RA 2000 Fühler bei einem P-Band zwischen 0,5 K und 2 K.

RA-N 20 UK Auslegungsdiagramm. Kapazität mit RA 2000 Fühler bei einem P-Band zwischen 0,5 K und 2 K.

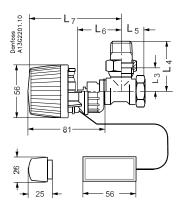


RA-N 20 und 25 Auslegungsdiagramm. Kapazität mit RA 2000 Fühler bei einem P-Band zwischen 0,5 K und 2 K.

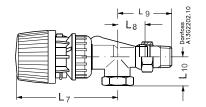
Konstruktion



- 1. Stopfbuchse
- 2. O-Ring
- 3. Druckstift
- Dichtung Spindel Rückholfeder
- 5.
- 6. Einstellkulisse Ventilgehäuse
- 7. Ventil 8. Düse
- Die Heizkörperthermostate bestehen aus je einem Fühlerelement der RA2000/RAW-Serie und einem Ventilgehäuse. Element und Ventilgehäuse sind getrennt zu bestellen.


Materialien der wasserberührten Teile

Einstellzylinder	PPS
Spindel	Ms, entzinkungsbeständig
O-Ring	EPDM
Ventilkegel	NBR
Druckstift und Ventilfeder	Chromstahl
Düse	PP
Gehäuse, übrige Metallteile	Ms 58


Abmessungen

Element mit eingebautem Fühler. Gehäuse in Ausführung Durchgang.

Element mit Fernfühler. Gehäuse in Eckausführung.

Element mit eingebautem Fühler. Gehäuse in Ausführung UK.

L9 — L8	DANFOSS A13G454.11
	<u>L</u>

Winkeleck

Typ Abmessungen mit RA 2000 Füh-	,	Anschlu	ss	L,	L ₂	L ₃	L ₄	L ₅	L ₆	L ₇	L ₈	L ₉	L ₁₀	se	lüs- el- eite
lerelement1)	DN	D	d ₂											S ₁	S ₂
RA-N 10	10	R _p 3/8	R 3/8	60	85	27	52	22	47	96				22	27
RA-N 10 UK	10	R _p 3/8	R 3/8						59	108	26	51	22	22	27
RA-N 10 Winkeleck	10	R _p 3/8	R 3/8							96	27	52	27	22	27
RA-N 15	15	R _p 1/2	R 1/2	67	95	30	58	26	47	96				27	30
RA-N 15 UK	15	R _p 1/2	R 1/2						60	109	29	57	27	27	30
RA-N 15 Winkeleck	15	R _p 1/2	R 1/2							96	30	58	33	27	30
RA-N 20	20	R _p 3/4	R 3/4	74	106	34	66	29	52	101				32	37
RA-N 20 UK	20	R _p 3/4	R 3/4						61	110	34	66	30	32	37
RA-N 25	20	R _p 1	R 1	90	125	40	75	34	52	101				41	46

 $^{1)}$ Mit RAW-Fühlerelement erhöht sich die Länge L $_{7}$ um 12 mm.

Typ Abmessungen		Anschlu	ss	L ₁	L ₂	L ₃	L ₄	L ₅	L ₆	L ₇	L ₈	L,	L ₁₀	Sch se we	
mit RAX Fühler	DN	D	d ₂											S ₁	S ₂
RA-NCX 15	15	R _p 1/2	R 1/2	67	95	30	58	26	47	90				27	30
RA-NCX 15 Winkeleck	15	R _p 1/2	R 1/2	67	95	30	58	26	47	90	30	58	33	27	30

Danfoss GmbH, Deutschland: danfoss.de • +49 69 80885 400 • cs@danfoss.de **Danfoss Ges.m.b.H., Österreich**: danfoss.at • +43 720 548 000 • cs@danfoss.at **Danfoss AG, Schweiz**: danfoss.ch • +41 61 510 00 19 • cs@danfoss.ch

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss Mitarbeitern ableiten, es sei denn, dass diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen des Angemessenen und Zumutbaren Änderungen an ihren Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und das Danfoss Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.