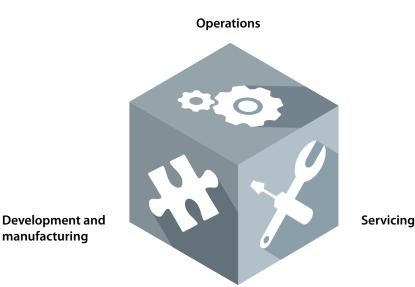
ENGINEERING TOMORROW

Brochure | Compressors for Commercial Air Conditioning

Savings now and for a lifetime

Danfoss compressors reduce costs across the entire product lifespan in the application. Build your business with a 360° perspective and experience the benefits of true savings.

An investment providing a lifetime of savings


Danfoss solutions provide a lifetime of savings

Driven by the global need to reduce CO₂ emissions, new legislations around the world are demanding air conditioning systems with higher energy performance as well as non-ODP(1) and lower-GWP(2) refrigerants. These legislations affect all unit types and lead to the redesign a large number of HVAC ranges.

As well as conforming to strict new standards, next-generation systems need to meet the challenges of complex applications, increased energy efficiency and varied climates, while also providing flexibility and top comfort. As a result, the HVACR industry is facing increasing complexity and multiple challenges in terms of development, running and maintenance costs.

- (1) ODP: Ozone Depletion Potential
- (2) GWP: Global Warming Potential

Save on

A global overview

of CO₂ emissions and regulations impacting HVAC markets

A revolution in the A/C market ...

Increasing population, level of comfort and high penetration of IT technologies are putting strong pressure on electric grids and driving up overall energy consumption

The increased demand for air conditioning systems and improved comfort is being driven by several factors. Examples include modern office architecture with large windows, as well as new development or renovation of hospitals, hotels, museums or data centers where air conditioning is critical.

New technologies spur the growth of multiple innovative applications, changing the way we live, communicate, conduct business and interact with machines. But new technologies require more energy. This explosive combination is driving up energy demand and utility peak loads.

Strong pressure to reduce CO₂ emissions

The growing need to reduce CO₂ emissions and save energy has led governments to implement regulations to protect the environment and encourage the development of energy efficient solutions.

... opens up new opportunities

A few years ago, 60-80% of air conditioning systems (chillers, rooftops, etc.) did not comply with the new standards and needed to be redesigned(3)

Original Equipment Manufacturers are increasingly being challenged. OEMs

need to provide integrated solutions with superior reliability and efficiency that are easy to install and maintain. All this calls for new thinking and a new set of technologies.

Danfoss innovations support OEMs in the challenge of improving part-load efficiency and maintaining full-load performance while transitioning to low-GWP alternatives and keeping development costs at competitive levels. Our technologies provide OEMs and end-users alike with a lifetime of

Eurovent database and European draft for

Danfoss compressors for air conditioning – a lifetime of savings

To meet the needs of an increasingly complex HVAC market, our extensive range of compressors offer functional benefits and savings throughout the lifecycle of the system from development and operating costs to servicing and maintenance.

Development costs

The flexibility, optimization and efficiency of Danfoss compressors ensure competitive design costs and short development times

Running costs

Danfoss technologies offer the widest portfolio for superior full and part-load efficiencies to reduce the running costs of the system

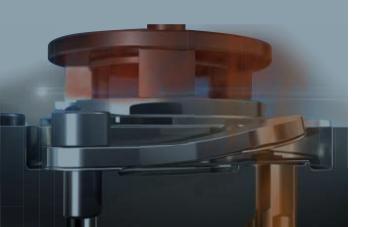
Service costs

The reliability, design and long working life of Danfoss compressors minimize maintenance and servicing costs while eliminating unplanned downtime

Manifold configurations

enable competitive design costs and staged modulation

Several compressors can be installed in a single system to provide flexible modulated cooling capacity. This approach extends capacity and performance while maintaining design and applied costs at competitive levels. Manifold configurations allow a wide system line up with few compressor models. Manifolding also offers a lower sound level compared to alternative technologies.


Our expertise in manifold design enables Danfoss to provide a wide range of potential configurations, from 5 to 150TR in a single circuit. Danfoss goes through a full set of lab qualification tests in order to provide reliable solutions for piping strength, oil balancing, sound and vibrations.

IDV technology

with IDVs are backward compatible

Applying variable speed technology keeps getting easier

Variable speed technology offers flexible design possibilities with a wide range of cooling capacities to match different applications and needs. It offers savings in reduced inventory and complexity. In addition, some system components are not always longer needed, including soft starter, phase protectors, etc., and water buffer tanks have been either reduced or eliminated – all of which helps to ensure the competitiveness of development costs.

Danfoss inverter scrolls VZH - 3rd generation with IDVs

3rd generation of Danfoss inverter scrolls have been optimized for part-load operations to deliver a high level of efficiency across a wide range of applications. The prequalified

compressor and drive packages reduce development time while increasing reliability. The Danfoss inverter scroll VZH with IDVs ranges from 4 to 26TR (52TR when used in hybrid tandems@full speed) in one circuit. The 3rd generation of inverter scrolls VZH features extended operating map to fit more applications especially

Close Control / CRAC units. It is the widest variable speed scroll lineup available in the world commercial HVAC market today.

Danfoss Turbocor® compressors

Danfoss Turbocor® compressors have transformed the commercial HVAC market with innovative technology that redefines lifetime operating costs for chiller applications. Danfoss Turbocor®'s family of centrifugal compressors is the world's first range of totally oil-free compressors. They feature innovative yet proven technologies including magnetic bearings, variable-speed centrifugal compression and digital controls.

All Danfoss Turbocor® TTS and TGS have the same physical size and connection locations. They also use the same controls and monitoring interface module and standard mounts. Their extremely compact size and low weight allows OEMs and contractors to cost-effectively install the compressor with a much smaller footprint than conventional compressors. Exceptional low-noise operation with no vibration eliminates the need for additional noise protection.

Reduce CO_2 emissions and energy consumption to get to the energy efficiency standards: Danfoss provides three options to help OEM customers meet the challenge

Manifold

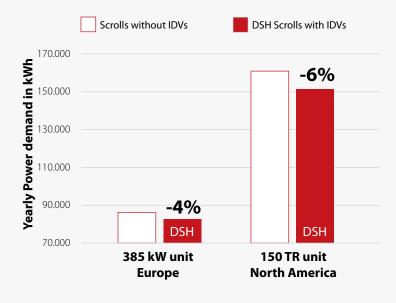
compressors

Enhancing part-load efficiency with staged modulation

The number of compressors running at any one time can be adapted to building occupancy and demand levels. This improves cooling efficiency and reduces energy use. Energy

performance is further enhanced with Danfoss IDV technology. In other terms, the benefits for the running costs of this type of system include:

- Up to 12 steps of capacity modulation for precise load-matching capabilities (trio in 4 circuits)
- high part-load / seasonal efficiency Our even and uneven manifold configurations up to 150TR in one circuit offer wide staged capacity modulation. For example, a system


with six manifold compressors in two circuits offers capacity modulation from 17% to 100%. This enables higher part-load efficiency compared to screw technology in a system of equivalent capacity. Danfoss IDV technology, implemented in the 7.5-50 ton range of the fixed-speed Danfoss Scrolls DSH/DSF and Danfoss inverter Scrolls, further enhances energy efficiency under part load conditions.

Superior part-load efficiency with Danfoss IDVs

A/W Chillers with 2 trio circuits 3x25TR

Reduced yearly power demand (kWh)

Danfoss IDVs

Danfoss Intermediate Discharge Valves (IDVs) mechanically reduce excessive compression of refrigerant under part-load conditions while maintaining the same cooling capacity. They adapt the effort of the motor to the pressure conditions in the system by opening when the pressure ratio (part-load) fall

below the built-in optimization point of the scroll. This reduces the effort of the motor and its electrical consumption thus improving the system's seasonal energy efficiency. IDV technology enhances system efficiency by 10-12% on average in Water-to-Water chillers and by 8-10% in rooftops and 6-8% in Air-to-Water chillers.

Less CO₂ emissions

European SEER according to EN14825

385 kW A/W Chillers

Variable outlet water temperature control from 7 to 11.5°C

Chiller pa	rameters:
------------	-----------

Tcond: 50° C

Tevap: 3.5° C

Fan Pw: 9.5% of Compressor Power at

full load

North American IPLV according to ANSI/AHRI

standard 550/590

150 TR A/W Chillers

Fixed outlet water temperature control @ 44°F

Chill	er pa	aram	eters:

Tcond: 122° F

Tevap: 39° F

Fan Pw: 9.5%

of Compressor Power at

full load

	Std. Scrolls	DSH	Difference
EERnet	2.89	2.87	
SEER	4.15	4.37	+5%
Pw demand (kWh)	86 223	82 516	-4%
Running costs (€) (*)	14 658	14.028	-630€
CO₂ emission (metric Tons) (**)	34.5	33.0	-1.5

(*) based on European average climate: 2 602 running hours 17 €cents per kWh: European average for commercial buildings

(**) 0.0004 Tons of CO₂ per kWh, EU average 2015

	Std. Scrolls	DSH	Difference
EER	10.2	10.2	
IPLV	15.5	16.65	+7%
Pw demand (kWh)	160 943	151 402	-6%
Running costs (US\$) (*)	17 092	16 079	-1 013 \$
CO ₂ emission (metric Tons) (**)	95.4	89.7	-5.7

(*) based on 2 973 running hours

10.62\$cents per kWh: US average for commercial buildings

(**) 0.000593 Tons of CO_2 per kWh, US average 2015

Variable speed technology

Continuously matches cooling needs with high efficiency

Variable speed technology is the premium solution in commercial air conditioning when it comes to energy savings, optimal comfort, accurate humidity and temperature control and controlled impact on the electrical network.

Around 85% of traditional commercial air conditioning installations are oversized to enable them to handle peak load conditions (about 3% of the operating time). Variable speed technology continuously matches building cooling demand under part-load conditions which is the vast majority of operating time. It also handles peak load conditions in a cost effective way. With a very low starting current and the ability to manage power fluctuations, Danfoss variable speed solutions ease the strain on power grids.

Danfoss is a world leader in this segment and offers the widest available range of commercial scroll, reciprocating and oil-free centrifugal inverter compressors for systems from 3 to 350 tons in single compressor/circuit configurations. Capacities of over 1,000 tons can be achieved by using multiple compressors and circuits.

Danfoss Inverter Scrolls VZH – 3rd generation with IDVs

3rd generation Danfoss inverter scrolls feature an Interior Permanent Magnet (IPM) and dedicated variable speed drive designed to provide maximum efficiency across the full operating range. Adapting to varying pressure ratios, it delivers the highest level of efficiency across a wide range of applications. Numerous case studies in renovation projects and laboratory testing demonstrate energy savings of up to 35%.

Savings with Danfoss inverter scrolls VZH

European SEER according to EN14825 100kW A/W Rooftop: 1 circuit

	Tandem 15TR	Inverter scroll VZH117	Difference
EERnet	3.22	3.17	-2%
SEER	3.16	4.15	31%
Annual En. Input (kWh)	29 386	22 470	-24%
Running cost (€) (*)	4 996	3 820	-1 176€
CO₂ emission (metric Tons) (**)	11.8	9.0	-2.8

Rooftop parameters:
Tcond: 50° C
Tevap: 11° C
Fan Pw(*): 9.5%
Evap. Fan Pw(*): 18.0%
(*): of Comp. Pw at full load

(*) based on European average climate: 2602 running hours

17 € cents per kWh: European average for commercial buildings (VAT incl.)

(**) 0.0004 Tons of CO₂ per kWh, EU average 2015

Rooftop parameters:
Tcond: 50° C
Tevap: 11° C
Fan Pw(*): 9.5%
Evap. Fan Pw(*): 18.0%
(*): of Comp. Pw at full load

Savings with Danfoss Turbocor® compressors TT

200 TR (700 kW) Air-cooled Chiller

Danfoss Turbocor® oil-free centrifugal technology

The Turbocor® family of compressors delivers outstanding energy efficiency in full- and part-load operation with energy savings of more than 42% compared to traditional compressors. The outstanding integrated part-load efficiency is the result of optimum energy performance through the entire operating range from 100% to ~20%.

The Danfoss Turbocor® compressor uses an integrated variable frequency drive to reduce compressor speed and maximize energy cost savings as the condensing temperature and/or heat load decreases. The soft start module, which is standard on every Danfoss Turbocor® compressor, significantly reduces the in-rush current at start up, provides advantages to line power systems and reduces thermal stress on the stator.

^{**} Performance degradation resulting from oil logging in heat exchangers

featuring	Inverter Screw	TT350	Savings
Compressor/Chiller Specifics			
Nb of compressors	2		_
Performance/physical data Comparison			
Full Load Efficiency (compressor COP)	3.70	3.81	3%
Full Load Efficiency (example chiller* COP)	3.10	3.40	10%
Part Load Efficiency (example chiller* ESEER)	4.60	5.60	22%
Sound power levels (unattenuated chiller* dBA)	101	92	-9
Physical weight (compressor kg)	745	136	82%
Footprint (compressor cubic meters)	0.62	0.20	68%
Annualized lifetime maintenance cost (USD)	2 260	900	1 360
Design/Operation Comparison			
Operating Map (temperature) Flexibility	High	Med	Screw
Unloading for Extreme Temperature Applications	High	Med	Screw
Design Life	20 years	20 years	_
Quick Restart. Loading and Adjustment	Med	High	Turbocor®
Long-Term Performance Sustainability – Oil Free	No**	Yes	Turbocor®
Maintenance – Oil free	No	Yes	Turbocor®
Reliability – Oil free	No	Yes	Turbocor®

Same chiller manufacturer for both

Savings on service and maintenance costs

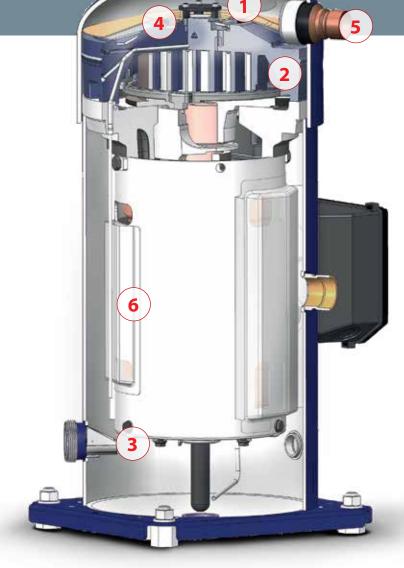
HVAC units often operate under harsh conditions that can affect the lifetime and reliability of the unit itself: Frequent on/off cycling, high ambient start-up, defrost mode, low superheat conditions, high ambient operations, oil equalization and oil return at part-load operations can all have severe effects on the entire lifetime and compressor applications.

Danfoss scrolls DSH and DSF:

a proven level of compressor robustness and system reliability

Danfoss has over 15 years of experience in R410A scroll compressors and billions of compressor operating hours in chiller applications worldwide. Building on this knowledge, Danfoss reliability and R&D teams use advanced statistical tools and psycrometric laboratory tests to study and measure the implications of system operations in critical conditions on compressor reliability. This has enabled Danfoss to develop the necessary countermeasures to improve compressor durability in many different applications. The generation of DSH and DSF Danfoss scrolls include several innovative features to improve compressor and system robustness.

1. Intermediate Discharge Valves:


Reduce the load on mechanical parts at start up, provide safer operation at high condensing and evaporating temperatures and contribute to better liquid management

2. Surface coating on thrust bearing and polymer bearings:

Improves compressor robustness in low lubrication conditions (start-up)

3. Organ pipe:

Maintains safe oil level at part-load in manifold configurations

4. Integrated Non-Return Valve:

Reduces refrigerant migration from high-pressure to low-pressure side after compressor shutdown

For DSH and DSF Large 20 to 50TR (240 to 600):

5. Integrated discharge temperature protection:

Prevents operation outside the operating envelope

6. Modified gas flow path (Snorkel) and sealed lower bearing:

Improves flooded start capabilities and overall compressor robustness against liquid slugs

Additional Reverse Vent Valve on

DSH 090 to DSH 184 and DSF prevent from reversed rotation in case of wrong phase connection

Extended equipment life and minimal scheduled maintenance with oilfree Danfoss Turbocor® compressors

Reduced maintenance and mechanical complexity are primarily driven by the elimination of oil from the refrigerant circuit. Friction-free magnetic bearing technology eliminates the cost of oilrelated equipment and management hardware as well as the maintenance costs associated with oil service.

This helps maintain long-term heat exchanger performance and delivers outstanding sustainability and long service life. Onboard intelligent electronic controls enable effective monitoring, control and self-diagnosis/correction of system operation. This eliminates some traditional OEM control and power panel costs and creates a sustainable, energy-efficient solution.

1. Motor and bearing control

Onboard digital electronics monitor compressor operation for optimization, reliability and diagnosis.

2. Permanent magnet motor

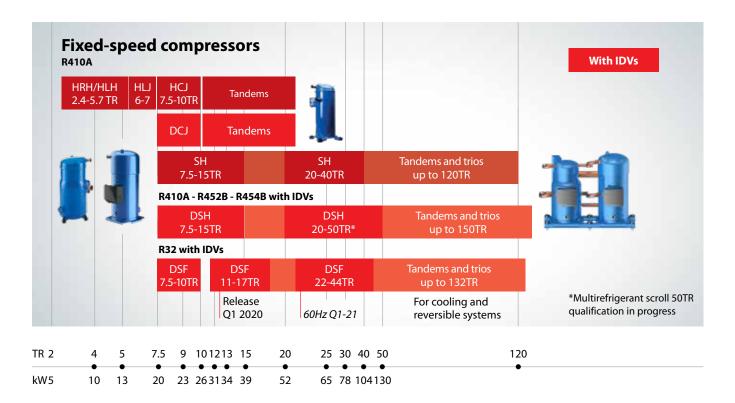
High-speed permanent magnet motor provides outstanding fullload efficiency.

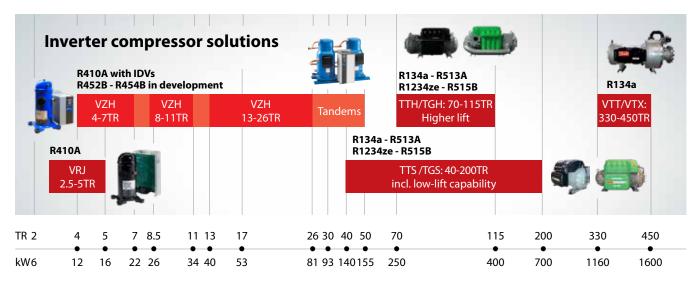
3. Soft-Starter

The built-in soft-starter significantly reduces high in-rush current at start up to only 2 amps and is maintenance free.

4. Pressure and temperature sensors

Feed information back to the controller to ensure the compressor operates within its designed envelope at all times.


5. Magnetic levitation


Totally oil-free design eliminates performance degradation and maintenance of oil-related equipment.

6. Fast Re-Start

The compressor can be configured to restart in less than 30 seconds following a power outage without the need for a UPS which allows the Chiller to resume operation quickly.

Danfoss solutions for a lifetime of savings

Rating (TR): ARI 45° F / 145° F / SH 20° F / SC 10° F Rating (kW): EN12900 5° C / 50° C / SH 10K / SC 0K - data at max speed for inverter scrolls Rating conditions are for Scroll compressors only.

Danfoss Scrolls H, SH, DSH and DSF series

R410A - 400V / 3 ~ / 50Hz

Model Capacity Cooling capacity Efficiency TR - 60Hz W COP in W/W HRH029 2.4 6,300 2.86 HRH031 2.6 6,700 2.77 HRH032 2.7 6,800 2.77 HRH034 2.8 7,500 2.88 HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH041 3.3 8,900 2.88 HRH043 3.7 9,600 2.77 HRH044 3.7 9,600 2.77 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH055 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500		Nominal cooling	50 Hz, EN12900 ratings		
HRH029 2.4 6,300 2.86 HRH031 2.6 6,700 2.77 HRH032 2.7 6,800 2.77 HRH034 2.8 7,500 2.88 HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ121 10 26,250 </th <th>Model</th> <th>capacity</th> <th>Cooling capacity</th> <th>Efficiency</th>	Model	capacity	Cooling capacity	Efficiency	
HRH031 2.6 6,700 2.77 HRH032 2.7 6,800 2.77 HRH034 2.8 7,500 2.88 HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH051 4.3 11,400 3.01 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH105 9 23,580 3.08 DSH105 10 26,790 3.11 DSH106 11 3 34,890 3.16 DSH106 20 52,730 3.10 DSH107 DSH381 32 81,490 3.11		TR - 60Hz	W	COP in W/W	
HRH032 2.7 6,800 2.77 HRH034 2.8 7,500 2.88 HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLJ072 6.0 15,800 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH381 32 81,490 3.11 DSH381 32 81,490 3.11	HRH029	2.4	6,300	2.86	
HRH034 2.8 7,500 2.88 HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH105 9 23,580 3.08 DSH106 13 34,890 3.16 DSH184 15 39,040 3.16 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH381 32 81,490 3.11 DSH388 32 81,490 3.11 DSH381 32 81,490 3.11	HRH031	2.6	6,700	2.77	
HRH036 3.0 7,800 2.79 HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH381 32 81,490 3.11	HRH032	2.7	6,800	2.77	
HRH038 3.2 8,200 2.72 HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH381 32 81,490 3.11	HRH034	2.8	7,500	2.88	
HRH040 3.3 9,000 2.79 HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 3.01 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.03 DCJ106 8.8 23,000 3.12 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.16 DSH381 32 81,490 3.16	HRH036	3.0	7,800	2.79	
HRH041 3.3 8,900 2.88 HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH140 12 30,370 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11	HRH038	3.2	8,200	2.72	
HRH044 3.7 9,600 2.77 HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH140 12 30,370 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.16	HRH040	3.3	9,000	2.79	
HRH049 4.1 10,700 2.96 HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.16	HRH041	3.3	8,900	2.88	
HRH051 4.3 11,400 3.01 HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 3.01 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.16 DSH385 40 103,530 3.16	HRH044	3.7	9,600	2.77	
HRH054 4.5 11,900 2.96 HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HRH049	4.1	10,700	2.96	
HRH056 4.7 12,300 2.98 HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HRH051	4.3	11,400	3.01	
HLH061 5.1 13,200 3.01 HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HRH054	4.5	11,900	2.96	
HLH068 5.7 15,000 3.11 HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HRH056	4.7	12,300	2.98	
HLJ072 6.0 15,800 3.11 HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HLH061	5.1	13,200	3.01	
HLJ075 6.3 16,500 3.12 HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HLH068	5.7	15,000	3.11	
HLJ083 6.9 18,200 3.13 DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HLJ072	6.0	15,800	3.11	
DCJ091 7.5 19,600 3.09 DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HLJ075	6.3	16,500	3.12	
DCJ106 8.8 23,000 3.12 DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	HLJ083	6.9	18,200	3.13	
DCJ121 10 26,250 3.11 DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DCJ091	7.5	19,600	3.09	
DSH090 7.5 20,050 3.06 DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DCJ106	8.8	23,000	3.12	
DSH105 9 23,580 3.08 DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DCJ121	10	26,250	3.11	
DSH120 10 26,790 3.11 DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH090	7.5	20,050	3.06	
DSH140 12 30,370 3.13 DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH105	9	23,580	3.08	
DSH161 13 34,890 3.16 DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH120	10	26,790	3.11	
DSH184 15 39,040 3.16 DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH140	12	30,370	3.13	
DSH240 20 52,730 3.10 DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH161	13	34,890	3.16	
DSH295 25 64,520 3.17 DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH184	15	39,040	3.16	
DSH381 32 81,490 3.11 DSH485 40 103,530 3.16	DSH240	20	52,730	3.10	
DSH485 40 103,530 3.16	DSH295	25	64,520	3.17	
	DSH381	32	81,490	3.11	
DSH600 50 128,860 3.18	DSH485	40	103,530	3.16	
	DSH600	50	128,860	3.18	

R454B - 400V / 3 ~ / 50Hz

	50 Hz, EN12900 ratings		
Model	Cooling capacity	Efficiency	
	W	COP in W/W	
DSH090	19,350	3.05	
DSH105	22,940	3.18	
DSH120	26,220	3.23	
DSH140	29,880	3.24	
DSH161	34,150	3.28	
DSH184	37,930	3.26	
DSH240	51,570	3.25	
DSH295	63,310	3.32	
DSH381	78,860	3.19	
DSH485	101,650	3.34	

Ready for R454B and R32.

R32 - 400V / 3 ~ / 50Hz

	50 Hz, EN12900 ratings		
Model	Cooling capacity Efficiency		
	W	COP in W/W	
DSF270	60,040	3.34	
DSF325	72,500	3.37	
DSF485	107,100	3.38	
DSF530	117,000	3.41	

Data given for Code 4: 400V - 50Hz

Net weight with oil charge TR = Ton of Refrigeration COP = Coefficient Of Performance,400V / 3ph / 50Hz EER = Energy Efficiency Ratio, 460V / 3ph / 60Hz

EN12900: evap. temp. 5 °C/41°F; cond. temp. 50 °C/122°F; superheat: 10 K/18°F; subcooling: 0 K

For full data details, capacity tables or use with other refrigerants, please refer to the Coolselector®2: coolselector.danfoss.com

Danfoss Scrolls H, SH and DSH series

R410A - 460V / 3~ / 60Hz

	Nominal cooling	60 Hz, ARI ratings			
Model	capacity	Cooling Capacity		Efficiency	
	TR - 60Hz	W	Btu/h	COP in W/W	EER in Btu.h/W
HRH029	2.4	8,500	29,000	2.99	10.20
HRH031	2.6	9,100	31,100	2.99	10.20
HRH032	2.7	9,400	32,100	3.02	10.31
HRH034	2.8	10,100	34,500	2.99	10.20
HRH036	3.0	10,400	35,500	2.99	10.20
HRH038	3.2	11,100	37,900	2.93	10.00
HRH040	3.3	12,200	41,600	3.02	10.31
HRH041	3.3	12,100	41,300	2.99	10.20
HRH044	3.7	13,000	44,400	3.02	10.31
HRH049	4.1	14,300	48,800	3.08	10.51
HRH051	4.3	15,200	51,900	3.14	10.72
HRH054	4.5	16,000	54,600	3.11	10.61
HRH056	4.7	16,700	57,000	3.11	10.61
HLH061	5.1	18,100	61,800	3.17	10.82
HLH068	5.7	20,100	68,600	3.20	10.92
HLJ072	6.0	21,200	72,400	3.19	10.89
HLJ075	6.3	22,300	76,100	3.25	11.09
HLJ083	6.9	24,300	82,900	3.22	10.99
DCJ091	7.5	27,100	92,500	3.23	11.01
DCJ106	8.8	31,500	107,400	3.25	11.11
DCJ121	10	35,700	121,900	3.21	10.96
DSH090	7.5	27,470	93,800	3.21	10.96
DSH105	9	32,280	110,200	3.22	11.00
DSH120	10	36,630	125,000	3.26	11.11
DSH140	12	41,510	141,700	3.26	11.12
DSH161	13	47,220	161,200	3.21	10.96
DSH184	15	53,160	181,400	3.25	11.09
DSH240	20	71,720	244,800	3.20	10.91
DSH295	25	87,570	298,900	3.25	11.09
DSH381	32	110,210	376,200	3.20	10.91
DSH485	40	141,850	484,100	3.25	11.10
DSH600	50	189,860	601,610	3.27	11.15
R454B - 46	0V / 3~ / 60Hz				

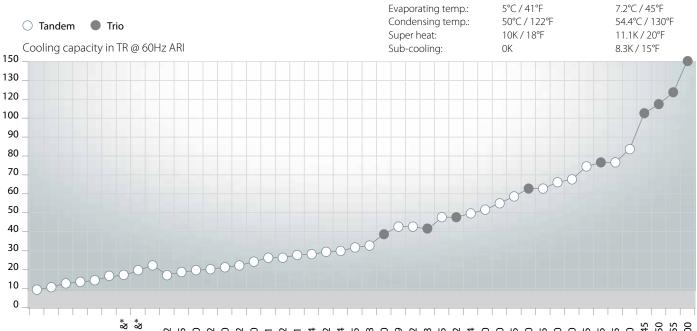
Ready for	
GWP	
<750	
refrigerants: R454B, R32 in development	

DSH090	-	19,350	66,010	3.05	10.41
DSH105	-	22,940	78,270	3.18	10.85
DSH120	-	26,220	89,470	3.23	11.02
DSH140	-	29,880	101,950	3.24	11.06
DSH161	-	34,150	116,530	3.28	11.19
DSH184	-	37,930	129,410	3.26	11.12
DSH240	-	51,570	175,970	3.25	11.09
DSH295	-	63,310	216,020	3.32	11.33
DSH381	-	78,860	269,080	3.19	10.88
DSH485	-	101,650	346,850	3.34	11.40

Data given for Code 4: 460V - 60Hz: 3 phases.

Net weight with oil charge TR = Ton of Refrigeration COP = Coefficient Of Performance, 400V / 3ph / 50Hz EER = Energy Efficiency Ratio, 460V / 3ph / 60Hz

ARI: evap. temp. 7.2 °C/45°F; cond. temp. 54.4 °C/130°F; superheat 11.1 K/20°F; subcooling 8.3 K/15°F



For full data details, capacity tables or use with other refrigerants, please refer to the Coolselector®2:

coolselector.danfoss.com

Manifold configurations with Danfoss Scrolls

Rating conditions - R410A A wide line-up with few compressor models

TLD082
TLD088
TLD136
TLD136
TLD136
TLD140
TLD168*
TCL210 8**
TCL21

		Cooling capacity – R410A					
Model	Composition	60 Hz – TR ARI	50 Hz – W EN 12900				
TLJ082	HRH041 + HRH041	7	18,800				
TLJ098	HRH049 + HRH049	8	21,400				
TLJ122	HLH061 + HLH061	10	26,200				
TLJ136	HLH068 + HLH068	11	29,900				
TLJ144	HLJ072 + HLJ072	12	31,600				
TLJ166	HLJ083 + HLJ083	14	36,200				
TCJ180	HCJ090 + HCJ090	15	39,600				
TCJ181	HCJ091 + HCJ091	15	40,000				
DCJ181	DCJ091 + DCJ091	15	39,300				
TCJ210	HCJ105 + HCJ105	17.5	46,200				
DCJ212	DCJ106 + DCJ106	17.5	46,000				
TCJ211	HCJ105 + HCJ105	17.5	46,600				
TCJ211	HCJ105 + HCJ105	17.5	46,600				
TCJ240	HCJ120 + HCJ120	20	52,000				
TCJ241	DCJ121 + DCJ121	20	52,500				
DSH090			19,350				
DSH105			22,940				
DSH120			26,220				
DSH140			29,880				
DSH161			34,150				
DSH182	DSH090 + DSH090	15	39,300				
DSH184			37,930				
DSH195	DSH090 + DSH105	16	43,300				
DSH210	DSH090 + DSH120	17.5	46,100				
DSH212	DSH105 + DSH105	17.5	47,200				
DSH230	DSH090 + DSH140	19	50,200				
DSH240			51,570				
DSH242	DSH120 + DSH120	20	52,800				
DSH260	DSH120 + DSH140	21.5	57,000				
DSH281	DSH120 + DSH161	23.5	60,700				
DSH282	DSH140 + DSH140	23.5	61,100				
DSH295			63,310				

		Cooling capacity – R410A				
Model	Composition	60 Hz – TR ARI	50 Hz – W EN 12900			
DSH301	DSH140 + DSH161	25	64,900			
DSH304	DSH120 + DSH184	25.5	65,800			
DSH322	DSH161 + DSH161	27	68,600			
DSH324	DSH140 + DSH184	27	70,000			
DSH345	DSH161 + DSH184	29	73,700			
DSH368	DSH184 + DSH184	30.5	78,800			
DSH381			78,860			
DSH420	3 x DSH140	36	89,100			
DSH424	DSH184 + DSH240	35	90,900			
DSH479	DSH184 + DSH295	40	102,600			
DSH482	DSH240 + DSH240	40	105,420			
DSH483	3 x DSH161	39	102,400			
DSH485			10,650			
DSH535	DSH240 + DSH295	45	117,230			
DSH552	3 x DSH184	45	114,500			
DSH564	DSH184 + DSH381	47	119,400			
DSH590	DSH295 + DSH295	49	129,040			
DSH620	DSH240 + DSH381	52	132,380			
DSH675	DSH295 + DSH381	56	144,190			
DSH720	3 x DSH240	60	156,050			
DSH725	DSH240 + DSH485	60	155,210			
DSH760	DSH381 + DSH381	63	159,340			
DSH780	DSH295 + DSH485	65	167,020			
DSH865	DSH381 + DSH485	72	182,170			
DSH885	3 x DSH295	75	191,020			
DSH895	DSH600 + DSH295	75	193,380			
DSH970	DSH485 + DSH485	80	204,990			
DSH1245	2 x DSH381 1 x DSH485	100	260,600			
DSH1350	1 x DSH381 2 x DSH485	110	303,800			
DSH1455	3 x DSH485	120	303,460			
DSH1800	3 x DSH600	150	386,600			

50 Hz - EN12900

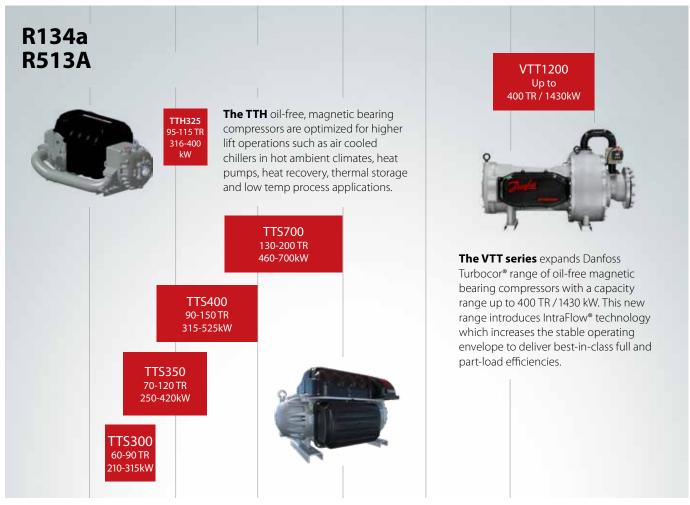
60 Hz - ARI

Danfoss Inverter Scrolls VZH series

Technical data

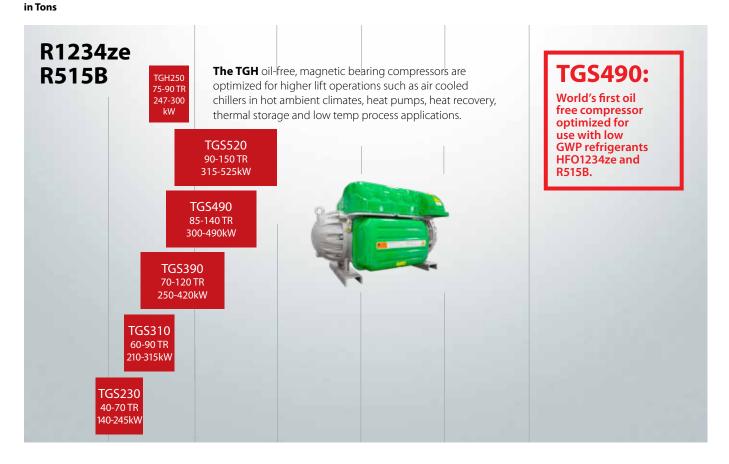
Cooling								Heating				
VZH 4-7TR (3~)			Capacity	Capacity Efficiency			Capacity	ity Efficiency				
Models	Speed	Conditions	TR	kW	EER [Btu/Wh]	COP [W/W]	Speed	kW	EER [Btu/Wh]	COP [W/W]		
VZH028	15 RPS	Part load (1)	0.71	2.5	17.17	5.03	30 RPS	3.77	9.52	2.79		
	Full speed	ARI (2)	4.15	14.6	9.59	2.83	Full speed	13.26	9.89	2.90		
	100 RPS	EN12900 (3)	3.67	12.9	9.18	2.71	100 RPS			2.90		
	15 RPS	Part load (1)	0.91	3.2	21.97	5.00	30 RPS	4.71	9.76	2.86		
VZH035	Full speed	ARI (2)	5.26	18.5	10.17	3.00	Full speed	16.47	10.30	3.02		
	100 RPS	EN12900 (3)	4.66	16.4	9.72	2.87	100 RPS	16.47		3.02		
	15 RPS	Part load (1)	1.20	4.2	20.68	5.14	30 RPS	6.00	9.93	2.91		
VZH044	Full speed	ARI (2)	6.77	23.8	10.44	3.06	Full speed	21.04	10.44	3.06		
	100 RPS	EN12900 (3)	5.97	21.00	10.00	2.93	100 RPS			3.06		
VZH 8.5-11TR (3~)												
	17 RPS	Part load (1)	1.64	5.80	21.18	6.20	40 RPS	8.15	8.47	2.48		
VZH052	Full speed 110 RPS	ARI (2)	8.67	30.50	10.09	2.96		26.81	9.67			
		EN12900 (3)	7.70	27.05	9.74	2.85	100 RPS			2.83		
	17 RPS	Part load (1)	2.02	7.10	21.13	6.19	40 RPS	10.50	8.47	2.48		
VZH065	110 RPS	ARI (2)	10.75	37.80	10.21	2.99		33.20	9.84			
	Full speed 110 RPS	EN12900 (3)	9.56	33.62	9.93	2.91	100 RPS			2.88		
VZH 13-26TR	(3~)											
	25 RPS	Part load (1)	4.11	14.45	21.81	6.39	25 RPS	10.47	9.45	2.77		
VZH088	Full speed	ARI (2)	13.42	47.21	10.20	2.99	Full speed	42.72				
	100 RPS	EN12900 (3)	11.90	41.85	9.79	2.87	100 RPS	42.72	10.20	2.99		
	25 RPS	Part load (1)	5.53	19.46	22.56	6.61	25 RPS	13.70	10.00	2.93		
VZH117	Full speed	ARI (2)	17.89	62.93	10.50	3.08	Full speed	56.45	10.54	2.00		
	100 RPS	EN12900 (3)	15.85	55.75	10.10	2.96	100 RPS	56.45	10.54	3.09		
	25 RPS	Part load (1)	8.05	28.32	22.11	6.48	25 RPS	20.10	10.17	2.98		
VZH170	Full speed	ARI (2)	26.19	92.11	10.85	3.18	Full speed	80.95	10.85	3.18		
	100 RPS	EN12900 (3)	23.15	81.41	10.44	3.06	100 RPS					

RATING CONDITIONS:

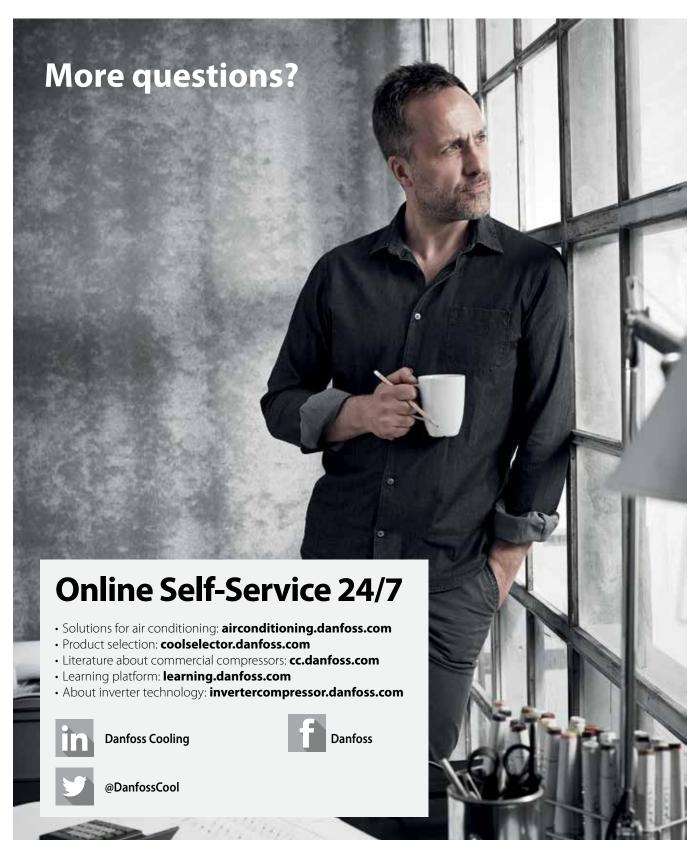

- (1) Part load: Evaporating Temp 7.2°C; Condensing Temp 35°C; Superheat 11.1K; Subcooling 8.3K
- $\textbf{(2) ARI:} Evaporating Temp 7.2 ^{\circ}C; Condensing Temp 54.4 ^{\circ}C; Superheat 11.1K; Subcooling 8.3K$
- (3) EN12900: Evaporating Temp 5°C; Condensing Temp 50°C; Superheat 10K; Subcooling 0K
- (4) Heating mode: Evaporating Temp -7°C; Condensing Temp 50°C; Superheat 5K; Subcooling 5K. All data include drive losses.

NOTES:

All data are for 380-480V Also available for 200-240V


 $^{^{\}ast}$ map control, oil management and CDS drive control of VZH inverter scroll compressors and the Modbus master and Heat-sink Control of the CDS drive.

Danfoss Turbocor® Compressors TTS, VTT, TGS, TTH and TGH series



0	200		4	00		600		800		100	00		1200		1400	
0	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400

For more support, contact Danfoss, askcc@danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.